تعداد نشریات | 27 |
تعداد شمارهها | 364 |
تعداد مقالات | 3,223 |
تعداد مشاهده مقاله | 4,741,617 |
تعداد دریافت فایل اصل مقاله | 3,238,635 |
Investigation of Unbalanced Magnetic Force in Permanent Magnet Brushless DC Machines with Diametrically Asymmetric Winding | ||
Journal of Operation and Automation in Power Engineering | ||
مقاله 10، دوره 6، شماره 2، اسفند 2018، صفحه 255-267 اصل مقاله (2.12 M) | ||
نوع مقاله: Research paper | ||
شناسه دیجیتال (DOI): 10.22098/joape.2006.4278.1334 | ||
نویسندگان | ||
M. Jafarboland* ؛ S. M. Mousavi | ||
Department of Electroceramics and Electrical Engineering, University of Malek-Ashtar, Iran | ||
چکیده | ||
The purpose of this paper is the calculation of Unbalanced Magnetic Force (UMF) in permanent magnet brushless DC (PMBLDC) machines with diametrically asymmetric winding and investigation of UMF variations in the presence of phase advance angle. This paper presents an analytical model of UMF in surface mounted PMBLDC machines that have a fractional ratio of slot number to pole number. This model is according to a 2-D analytical field model. By an appropriate choice for slot number to the pole number ratio, the magnitude of UMF is zero and this is achieved only when the stator slot and coils distribution are symmetrical about the diameter of the machine. The presented model is validated by 2-D finite element analysis and a good agreement is obtained between them. Also, UMF is calculated in the presence of different phase advance angles. UMF was calculated for 33-slot/34-pole and 36-slot/34-pole external rotor machines with analytical and finite element method. A machine with 33-slot/34-pole has significantly larger UMF than the 36-slot/34-pole machine. Also, UMF is calculated for the 33-slot/34-pole machine in the presence of phase advanced angles and results show that the magnitude of UMF changes with the amount of phase advance angle periodically. The impact of phase advance angle method on the magnitude of UMF is investigated for the first time by finite element method. Due to increasing or decreasing of the magnitude of UMF in the presence of different phase advance angles, the magnitude of UMF is an important feature in the selection of appropriate phase advance angle. | ||
کلیدواژهها | ||
Permanent magnet brushless DC machines؛ pole and slot number combination؛ asymmetric winding؛ unbalanced magnetic force؛ phase advance angle | ||
مراجع | ||
[1] M. Bigdeli, D. Azizian and E. Rahimpour, “An improved big bang-big crunch algorithm for estimating three-phase induction motors efficiency,” J. Oper. Autom. Power Eng., vol. 4, no. 1, pp. 83-92, 2016. [2] Z. Q. Zhu and D. Howe, “Electrical machines and drives for electric, hybrid, and fuel cell vehicles,”in Proce. of the IEEE,2007,pp.746-765. [3] A. M. El-Refaie. “Fractional-slot concentrated-windings synchronous permanent magnet machines: Opportunities and challenges,” IEEETrans. Ind. Electron., vol. 57, no. 1,pp. 107-121, 2010. [4] M. S. Islam, S. Mir and T. Sebastian, “Issues in reducing the cogging torque of mass-produced permanent-magnet brushless DC motor,” IEEETrans. Ind. Appl., vol. 40, no. 3,pp. 813-820, 2004. [5] N. Bianchi and S. Bolognani, “Design techniques for reducing the cogging torque in surface-mounted PM motors,” IEEETrans. Ind. Appl., vol. 38, no. 5,pp. 1259-1265, 2002. [6] A. M. El-Refaie and T. M. Jahns, “Optimal flux weakening in surface PM machines using fractional-slot concentrated windings,” IEEETrans. Ind. Appl., vol. 41, no. 3,pp. 790-800, 2005. [7] A. G. Jack, B. C. Mecrow, P. G. Dickinson, D. Stephenson, J. S. Burdess, N. Fawcett and J. T. Evans, “Permanent-magnet machines with powdered iron cores and prepressed windings,” IEEETrans. Ind. Appl., vol. 36, no. 4,pp. 1077-1084, 2000. [8] D. Ishak, Z. Q. Zhu and D. Howe, “Permanent magnet brushless machines with unequal tooth widths and similar slot and pole numbers,” IEEETrans. Ind. Appl., vol. 41, no. 2,pp. 584-590, 2005. [9] D. Ishak, Z. Q. Zhu and D. Howe, “Eddy-current loss in the rotor magnets of permanent-magnet brushless machines having a fractional number of slots per pole,” IEEETrans. Magn., vol. 41, no. 9,pp. 2462-2, 2469, 2005. [10] D. Ishak, Z. Q. Zhu and D. Howe, “Comparison of PM brushless motors, having either all teeth or alternate teeth wound,” IEEETrans. Energy Convers., vol. 21, no. 1,pp. 95-103, 2006. [11] R. Wrobel, and P. H. Mellor, “Design considerations of a direct drive brushless machine with concentrated windings,” IEEETrans. Energy Convers., vol. 23, no. 1,pp. 1-8, 2008. [12] Z. Q. Zhu, Z. P. Xia, L. J. Wu and G. W. Jewell, “Analytical modeling and finite-element computation of radial vibration force in fractional-slot permanent-magnet brushless machines,” IEEETrans. Ind. Appl., vol. 46, no. 5,pp. 1908-1918, 2010. [13] S. G. Min and B. Sarlioglu, “Modeling and investigation on electromagnetic noise in pm motors with single and double layer concentrated winding for EV and HEV Application,” IEEETrans. Transp. Electrif., vol. 4, no. 1,pp. 292-302, 2018. [14] Z. Q. Zhu, M. M. Jamil and L. J. Wu, “Influence of slot and pole number combinations on unbalanced magnetic force in PM machines with diametrically asymmetric windings,” IEEETrans. Ind. Appl., vol. 49, no. 1,pp. 19-30, 2013. [15] Y. Donmezer and L. T. Ergene, “Cogging torque analysis of interior-type permanent-magnet brushless DC motor used in washers,”Proce. 8th Int. Symp. Adv. Electromech. Motion Syst. Electr. Drives,2009,pp.1-6. [16] T. Yoon, “Magnetically induced vibration in a permanent-magnet brushless DC motor with symmetric pole-slot configuration,” IEEETrans. Magn., vol. 41, no. 6,pp. 2173-2179, 2005. [17] A. Rahideh and T. Korakianitis, “Analytical open-circuit magnetic field distribution of Slotless brushless permanent-magnet machines with rotor eccentricity,” IEEETrans. Magn., vol. 47, no. 12,pp. 4791-2011, 2005. [18] C. H. Kang, K. J. Kang, J. Y. Song, Y. J. Cho and G. H. Jang, “Axial unbalanced magnetic force in a permanent magnet motor due to a skewed magnet and rotor eccentricities,” IEEETrans. Magn., vol. 53, no. 11,pp. 1-5, 2017. [19] H. Nazari and N. Rostami, “Diagnosis of different types of air-gap eccentricity fault in switched reluctance motors using transient finite element method,” J. Oper. Autom. Power Eng., vol. 3, no. 2, pp. 94-101, 2015. [20] S. H. Won, W. H. Kim and J. Lee, “Effect of the incomplete magnetization of permanent magnet in the characteristics of BLDC motor,” IEEETrans. Magn., vol. 45, no. 6,pp. 2847-2850, 2009. [21] G. H. Jang, J. W. Yoon, N. Y. Park and S. M. Jang, “Torque and unbalanced magnetic force in a rotational asymmetric brushless DC motors,” IEEETrans. Magn., vol. 32, no. 5,pp. 5157-5159, 1996. [22] J. Cros and P. Viarouge, “Synthesis of high performance PM motors with concentrated windings,” IEEETrans. Energy Convers., vol. 17, no. 2,pp. 248-253, 2002. [23] Z. Q. Zhu, “Fractional slot permanent magnet brushless machines and drives for electric and hybrid propulsion systems” J. Comput. Math. Electr. Electron. Eng., vol. 30, no. 1, pp. 9-31, 2011. [24] C. C. Chan, J. Z. Jiang, W. Xia and K. T. Chan, “Novel wide range speed control of permanent magnet brushless motor drives,” IEEETrans. Power Electron., vol. 10, no. 5, pp. 539-546, 1995. [25] S. I. Park, T. S. Kim, S. C. Ahn and D. S. Hyun, “An improved current control method for torque improvement of high-speed BLDC motor,”Proce. 8th Annu. IEEE Appl. Power Electron. Conf.,2003,pp.294-299. [26] Z. Q. Zhu, D. Ishak, D. Howe and J. Chen, “Unbalanced magnetic forces in permanent-magnet brushless machines with diametrically asymmetric phase windings,” IEEETrans. Ind. Appl., vol. 43, no. 6,pp. 1544-1553, 2007. [27] Z. Q. Zhu, D. Howe and C. C. Chan, “Improved analytical model for predicting the magnetic field distribution in brushless permanent-magnet machines,” IEEETrans. Magn., vol. 38, no. 1,pp. 229-238, 2002. [28] Z. Q. Zhu and D. Howe, “Instantaneous magnetic field distribution in brushless permanent magnet DC motors. III. Effect of stator slotting,” IEEETrans. Magn., vol. 29, no. 1,pp. 143-151, 1993. [29] Z. Q. Zhu and D. Howe, “Instantaneous magnetic field distribution in permanent magnet brushless DC motors. IV. Magnetic field on load,” IEEETrans. Magn., vol. 29, no. 1,pp. 152-158, 1993. [30] Z. Q. Zhu and D. Howe, “Instantaneous magnetic field distribution in brushless permanent magnet DC motors. II. Armature-reaction field,” IEEETrans. Magn., vol. 29, no. 1,pp. 136-142, 1993. [31] F. Magnussen and C. Sadarangani, “Winding factors and Joule losses of permanent magnet machines with concentrated windings,”Proce. IEEE Int. Electr. Mach. Drive Conf.,2003,pp.333-339. | ||
آمار تعداد مشاهده مقاله: 960 تعداد دریافت فایل اصل مقاله: 1,070 |