| تعداد نشریات | 30 |
| تعداد شمارهها | 438 |
| تعداد مقالات | 3,872 |
| تعداد مشاهده مقاله | 6,459,138 |
| تعداد دریافت فایل اصل مقاله | 4,325,627 |
Projective change between special cubic (α,β)-metric and Randers metric | ||
| Journal of Finsler Geometry and its Applications | ||
| مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 25 آبان 1404 اصل مقاله (308.11 K) | ||
| نوع مقاله: Original Article | ||
| شناسه دیجیتال (DOI): 10.22098/jfga.2025.17700.1166 | ||
| نویسندگان | ||
| Brijesh Kumar Tripathi* 1؛ Sadika Khan2 | ||
| 1Department of Mathematics, L. D. College of Engineering, Ahmedabad, Gujarat, India | ||
| 2Science Mathematics Branch, Gujarat Technological University, Ahmedabad, Gujarat, India | ||
| چکیده | ||
| In 1994, S. Basco and M. Matsumoto studied the concept of projective change between two Finsler spaces with (α,β)-metrics. Projective change between two Finsler metrics arises from Information Geometry. In the present paper, we find conditions to characterize the projective change between two (α,β)-metrics, such as special cubic (α,β)-metric and Randers metric on a manifold with dim n≥3, where α and α- are two Riemannian metrics, β and β- are two non-zero 1-forms. | ||
| کلیدواژهها | ||
| Finsler space؛ cubic (α,β)-metric؛ Douglas metric؛ locally Minkowskian space | ||
| مراجع | ||
|
1. P. L. Antonelli, R. S. Ingarden and M. Matsumoto, The Theory of sprays and Finsler spaces with applications in Physics and Biology, Kluwer academic publishers, London,1985. 2. L. Berwald, On Finsler and Cartan geometries, III. Two-dimensional Finsler spaces with rectilinear extremals, Ann. Math., 42(20) (1941), 84-112. 3. S. B´ac´so and M. Matsumoto, Projective change between Finsler spaces with (α; β)- metrics, Tensor N.S., 55 (1994), 252-257. 4. G. Chen and X. Cheng, A class of Finsler metrics projectively related to a Randers metric, Publ. Math. Debrecen., 81(3-4) (2012), 351-363. 5. N. Cui and Y. B. Shen, Projective change between two classes of (α; β)-metrics, Diff.Geom. Appl., 27 (2009), 566-573. 6. G. Yang, On a class of Einstein-reversible Finsler metrics, Differ. Geom. Appl., 60 (2018), 80-10. 7. M. Hashiguchi and Y. Ichijy¯o, Randers spaces with rectilinear geodesics, Rep. Fac. Sci. Kagoshima Univ. (Math. Phys. Chem.), 13 (1980), 33-40. 8. M. Matsumoto, Foundations of Finsler Geometry and special Finsler spaces, Kaiseisha press Otsu, Saikawa, 1986. 9. M. Matsumoto, Projective changes of Finsler metrics and projectively flat Finsler spaces,Tensor N.S., 34 (1980), 303-315. 10. H. S. Park and Y. Lee, Projective changes between a Finsler space with (α; β)-metric and associated Riemannian metric, Canad. J. Math., 60 (2008), 443-456. 11. A. Rapcs´ak, Uber die bahntreuen Abbildungen metrisher R¨aume ¨ , Publ. Math. Debrecen, 8 (1961), 285-290. 12. G. Randers, On an asymmetric metric in the four-space of general relativity, Phys. Rev.,59 (1941), 195-199. 13. H. Rund, The differential geometry of Finsler spaces, Springer-Verlag, Berlin, 1959. 14. S. K. Narsimhamurthy and D. M. Vasantha, Projective change between two Finsler spaces with (α; β)-metric, Kyungpook Math. J., 52 (2012), 81-89. 15. Y. B. Shen and Y. Yu, On projectively related Randers metric, Inter. J. Math., 19(5) (2008), 503-520. 16. Z. Shen, On projectively related Einstein metrics in Riemann-Finsler geometry, Math.Ann., 320 (2001), 625-647. 17. Z. Shen, Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, 2001. 18. Z. Szab´o, Positive definite Berwald spaces, Tensor N.S., 35 (1981), 25-39. 19. B. K. Tripathi, S. Khan and V. K. Chaubey, On Projectively Flat Finsler Space with a special cubic (α; β)- metric, Filomat, 37(26) (2023), 8975-8982. 20. B. K. Tripathi and S. Khan, On weakly Berwald space with a special cubic (α; β)-metric,Surv. Math. Appl., 18 (2023),1-11. 21. B. K. Tripathi, S. Khan and M. K. Singh, Conformally flat locally Minkowski Finsler space with a special cubic (α; β)-metric, J. Adv. Math. Stud., 16(3) (2023), 275-281. 22. M. Zohrehvand and M. M. Rezaii, On projectively related of two special classes of (α; β)-metrics, Diff. Geom. Appl., 29(5) (2011), 660-669. 23. B. K. Tripathi and S. Prajapati, On Berwald-Matsumoto type Finsler metrics, J. Finsler Geom. Appl., 6(2) (2025), 71-81. 24. P. K. Dwivedi, Sachin Kumar and C. K. Mishra, On projectively flat Finsler space with n-power (α; β)-metric, J. Finsler Geom. Appl., 5(2) (2024), 14-24. | ||
|
آمار تعداد مشاهده مقاله: 18 تعداد دریافت فایل اصل مقاله: 25 |
||