
تعداد نشریات | 30 |
تعداد شمارهها | 426 |
تعداد مقالات | 3,753 |
تعداد مشاهده مقاله | 5,903,526 |
تعداد دریافت فایل اصل مقاله | 4,095,374 |
Study of W7- curvature tensor on (LPK)n manifolds | ||
Journal of Finsler Geometry and its Applications | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 28 مهر 1404 اصل مقاله (307.11 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22098/jfga.2025.17333.1158 | ||
نویسندگان | ||
Shivam Mishra* 1؛ Shyam Kishor2؛ Anoop Kumar Verma3 | ||
1Research Scholar, Department of Mathematics and Astronomy, University of Lucknow, U.P., India | ||
2Faculty, Department of Mathematics and Astronomy, University of Lucknow, Lucknow, U.P., India. | ||
3Research Scholar, Department of Mathematics and Astronomy, University of Lucknow, Lucknow, U.P., India. | ||
چکیده | ||
In this paper, we study the characteristics of n-dimensional Lorentzian para- Kenmotsu manifolds (briefly, (LP K)n) endowed with the W7-curvature tensor. First, we analyzed (LP K)n manifolds under the condition W7(X, Y, Z, ξ) = 0. Next, we explore (LP K)n manifolds satisfying the W7-semisymmetric condition, ϕ-W7- symmetric condition, and ϕ-W7-flat condition. Moreover, we discuss Lorentzian para-Kenmotsu manifolds under the condition W7(U, V ) · R = 0, and prove that such manifolds reduce to Einstein manifolds. Finally, all the relevant results have been verified through an example. | ||
کلیدواژهها | ||
Lorentzian para-Kenmotsu manifold؛ Ricci flat؛ Einstein manifold؛ W7-semisymmetric | ||
مراجع | ||
1. G. P. Pokhariyal, Relativistic significance of curvature tensors, Int. J. Math. Math. Sci.5(1) (1982), 133-139. 2. M. Atceken, Some results on invariant submanifolds of Lorentzian para-Kenmotsu manifolds Korean J. Math. 30(1) (2022), 175-185. 3. C. L. Bejan and M. Crasmareanu, Ricci solitons in manifolds with quasi-constant curvature. Publ. Math. Debrecen, 78(1) (2011), 235-243. 4. A. M. Blaga, η-Ricci solitons on para-Kenmotsu manifolds. ArXiv (Cornell University),2014. 5. A. Blaga, η-Ricci solitons on Lorentzian para-Sasakian manifolds. Filomat, 30(2) (2016),489-496. 6. G.P. Pokhariyal. Study of new curvature tensor in Sasakian manifold. Tensor, N.S.,36(1982), 222-226. 7. A. Magnon, Semi-Riemannian Geometry with Applications to Relativity (Barrett O’Neill). SIAM Review, 28(2) (1986), 269-270. 8. B.B. Sinha, and K.L.S. Sai Prasad,A class of almost para contact metric manifold, Bull.Calcutta. Math. Soc. 87(1995), 307-312. 9. A. Haseeb and R. Prasad,Certain results on Lorentzian para-Kenmotsu manifolds. Bull.Paraan. Math. Soc. 39(3) (2021), 201-220. 10. A. Singh and Shyam Kishor. Some Types of η-Ricci Solitons on Lorentzian ParaSasakian manifolds. Facta. Univ. Ser. Math. Inf. 33(2) (2018), 217-217. 11. Shyam Kishor and A. Singh, η-Ricci solitons on 3-dimensional Kenmotsu manifolds,Bull. Transilvania. Univ. Brasov. Ser. III Math. Comp. Sci. 13(62)(1) (2020), 209-218.. 12. C. S. Bagewadi, and G. Ingalahalli, Ricci solitons in Lorentzian-Sasakian manifolds.Acta Math. Acad. Paeda. Nyire. 28(2012), 59-68. 13. G. Ingalahalli and C.S. Bagewadi,Ricci Solitons in α-Sasakian manifolds. ISRN Geometry, 13.421384, 2012. 14. S. Kishor and P. Verma, Some Results On W1-Curvature tensor On (k; µ)- Contact Space forms, 2018. 15. R. Prasad, A. Haseeb, A. Verma, and V.S. Yadav, A study of φ-Ricci symmetric LPKenmotsu manifolds. Int. J. Maps. Math. Volume 7, Issue 1, Pages:33-44, 2024. 16. A. Singh, S. Kishor,Curvature Properties of η-Riccci Solitons on Para-Kenmotsu Manifolds. Kyungpook. Math. Journal. 59(2019), 149-161. 17. S. Kishor and P. Verma, On W7-Curvature tensor of Generalized Sasakian Space Forms,Int. J. Math. Tren. Tech. 49(2017). 18. S. Kishor and P. Verma, On W0 Curvature Tensor of Generalized Sasakian-Space-Forms,JUSPS-A Vol. 29(10) (2017), 427-439. 19. P. Alegre, Slant submanifolds of Lorentzian Sasakian and para Sasakian manifolds. Taiwanese. J. Math. 17(3) (2013), 897-910. 20. M. M. Tripathi, P. Gupta, T-curvature tensor on a semi-Riemannian manifold, J. Adv.Math. Stud, 4(1) (2011), 117-129. 21. U. C. De, R. N. Singh and S. K. Pandey, On the Conharmonic Curvature Tensor of Generalized Sasakian-Space-Forms, Int. Sch. Res. Notices, 1(2012), 876276. | ||
آمار تعداد مشاهده مقاله: 3 تعداد دریافت فایل اصل مقاله: 1 |