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Abstract. In this paper, we are going to study the characteristics of n-
dimensional Lorentzian para-Kenmotsu manifolds (briefly, (LPK),) endowed
with the Wr-curvature tensor. First, we analyzed (LPK), manifolds under the
condition W7 (XY, Z &) = 0. Next, we explore (LPK), manifolds satisfying
the Wr-semisymmetric condition, ¢-Wr-symmetric condition, and ¢-Wr-flat
condition. Moreover, we discuss Lorentzian para-Kenmotsu manifolds under
the condition W+(U,V) - R = 0, and prove that such manifolds reduce to Ein-
stein manifolds. Finally, all the relevant results have been verified through an
example.

Keywords: Lorentzian para-Kenmotsu manifold, Wr-curvature tensor, Ricci
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1. Introduction

The study of curvature tensors plays a fundamental role in differential geom-
etry, particularly in the context of various specialized manifolds. The concept
of curvature tensors is central to understanding the geometric and physical

*Corresponding Author
AMS 2020 Mathematics Subject Classification: 53C25, 53C50

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 Inter-
national License.
Copyright (©) 2026 The Author(s). Published by University of Mohaghegh Ardabili
31


https://doi.org/10.22098/jfga.2025.17333.1158
https://orcid.org/0009-0004-6156-6267
 https://creativecommons.org/licenses/by-nc/4.0/

32 Shyam Kishor, Shivam Mishra and Anoop Kumar Verma

properties of differentiable manifolds. In this regard, the Wr-curvature tensor,
introduced by G.P. Pokhariyal [1] in 1982, has been extensively explored in the
literature. This tensor, defined with the support of the Weyl curvature tensor,
has found significant applications in the study of Lorentzian para-Kenmotsu
manifolds.

Para-Kenmotsu manifolds were first introduced by B.B. Sinha and K.L. Sai
Prasad [8] in 1989, and since then, these manifolds have been a subject of con-
tinued research due to their intriguing geometric properties. In recent years,
Lorentzian para-Kenmotsu manifolds have garnered attention, particularly in
the study of invariant submanifolds and Ricci solitons. The seminal work by
Haseeb and Prasad [9] initiated the study of Lorentzian para-Kenmotsu man-
ifolds, and subsequent contributions by Atceken [2](2022) provided conditions
for invariant submanifolds to be totally geodesic. Ricci solitons, which rep-
resent self-similar solutions to the Ricci flow, have also been examined in the
context of these manifolds by Bagewadi [14, 15], Bejan and Crasmareanu [3],
Blaga [4] and many others (see also [16, 17, 18, 19]).

This paper is organized as follows: Section 1 provides the necessary back-
ground and historical developments related to the para-Kenmotsu manifolds,
Lorentzian para-Kenmotsu manifolds, and curvature tensors. Section 2 outlines
the fundamental preliminaries and essential results required for subsequent dis-
cussions. Section 3 delves into the condition W7 (X,Y, Z,£) = 0 of Lorentzian
para-Kenmotsu manifolds. Section 4 examines the Wr-semisymmetric condi-
tion of Lorentzian para-Kenmotsu manifolds. In section 5, we analyze the
¢-Wr-symmetry condition in (LPK), manifolds. Section 6 is devoted to the
study of ¢-Wr-flatness in Lorentzian para-Kenmotsu manifolds. Section 7, con-
siders Lorentzian para-Kenmotsu manifolds satisfying the condition, W (U, V)-
R = 0 and shows that such manifolds reduce to an Einstein manifolds. Finally,
in section 8 we construct an example to verify the results.

Through this work, we aim to establish a foundational framework for the Wy-
curvature tensor, offering new directions for research in differential geometry
and its applications in the study of special manifolds.

2. Preliminaries

2.1. Lorentzian almost paracontact metric manifold.

Definition 2.1. An n-dimensional differentiable manifold M equipped with a
structure (¢,&,1,9) is called a Lorentzian almost paracontact metric manifold
if it satisfies the following properties [21] :

n() = -1, (2.1)
P*X = X +n(X)E, (2.2)
¢¢ = 0,n(¢X) =0, (2.3)
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(X, 8Y) = g(X,Y) +n(X)n(Y), (2.4)
9(X,€) = n(X), (2.5)
B(X,Y) = B(Y, X) = g(X, 4Y). (2.6)

for any vector field X, Y on M, where ¢ is a (1,1) tensor field, £ is a con-
travariant vector field also known as Reeb vector field, n is a 1-form, and g is
a Riemannian metric.

A Lorentzian para-Sasakian manifold is a Lorentzian almost paracontact
manifold if
(Vxo)Y = g(X,Y) +n(Y)X + 2n(X)n(Y)E, (2.7)

2.2. Lorentzian Para-Kenmotsu Manifolds.

Definition 2.2. A Lorentzian almost paracontact metric manifold M is called
a Lorentzian para-Kenmotsu manifold if [9)

(Vxo)Y = —g(¢X,Y){ —n(Y)oX. (2.8)
for any vector fields X, Y € M.

In a Lorentzian para-Kenmotsu manifold, denoted by (LPK),,, we have the
following fundamental relations:

Vx§=—X —n(X)g, (2.9)
(Vxn)Y = —g(X,Y) = n(X)n(Y), (2.10)

where V is the Levi-Civita connection with respect to the Lorentzian metric g.

Curvature Properties :
On a Lorentzian para-Kenmotsu manifold M, the Riemannian Curvature ten-
sor R satisfies the following fundamental relations [9]:

9(R(X,Y)Z,&) = g(Y, Z)n(X) — g(X, Z)n(Y), (
R(§ X)Y = —R(X,§Y = g(X,Y){ —n(Y)X, (

R(X,Y)E = 5(Y)X — 5(X)Y, (2.13
R(&X)g =X+ W(X)f7 (

Ricci Tensor Properties :
The Ricci tensor S and Ricci operator @ on an (LPK), manifold satisfy:

5(X,8) = (n = 1)n(X), (2.15)
Q¢ = (n— 1), (2.16)
S(@X,9Y) = S(X,Y) + (n = Dn(X)n(Y), (2.17)

Furthermore, by the second Bianchi identity, we obtain:

(divR)(X,Y, Z) = (VxS)(Y, Z) = (VyS)(X, Z), (2.18)
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(VUS)(ng):S(Urz)_(n_l)ga]vz)? (219)

where R, S, and ) denote the Riemannian curvature tensor, Ricci tensor, and
Ricci operator on (LPK),, manifold M, respectively.

2.3. The W;-Curvature Tensor.

Definition 2.3. The Wr-curvature tensor on a Lorentzian para-Kenmotsu
manifold is defined by:[20]

Wo(X,Y)Z = R(X,Y)Z + ﬁ{g(}ﬁ Z2)QX — S(Y, Z)X}. (2.20)

By substituting specific vector fields X = £ into equation (2.20), we obtain
the following important relations:

W€ V)Z = 2(Y. 2]~ n(2)Y - oSV 2 (221
Setting Y = ¢
Wi(X.6)Z = ~g(X. 2)6 + T -n(Z)QX, (2.22)
and setting Z = ¢
Wa(X,Y)E = —5(X)Y + ﬁn(Y)QX- (2.23)

2.4. n-Einstein Manifold.

Definition 2.4. A Lorentzian para-Kenmotsu manifold M is said to be an
n-Einstein manifold if its Ricci tensor satisfies the following condition:

S(X,Y) =ag(X,Y)+ bW(X)TI(Y)v (2'24)

where a and b are scalar functions on M. When b = 0, the manifold reduces
to an Einstein manifold.

3. (LPK), with condition Wi(X,Y,Z,£) =0
Theorem 3.1. A £-W;-Flat (LPK),, is an n-FEinstein manifold.

Proof. From (2.20), we have

Wo(X.Y, 2,U) = R(X,Y, 2,0) + ——{g(V, 2)S(X,0) ~ S(7, 2)g(X,U
(

Putting U = £ in (3.1) we have

WiX, Y, 2,6) = ROGY, 2,6) + ——{a(¥, 2)S(X,€) - 8(v, 2)9(X,6)}.
(3.2)
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By considering W7(X,Y, Z,£) = 0 in the above relation, we have

RXY 2,6 = S0, 2)9(X.6) - gV. DS(X. 0} (33
Using the equations (2.13) and (2.15) in the equation (3.3), we have
L n(X)S(Y, ) = m(X)(Y, Z) — n(V)g(X, 2). (3.4)
Taking X = £ in the (3.4), we get
S, Z) =2(n—1)g(Y, Z) + (n — )n(Y)n(Z). (3-5)
Thus, manifold M is an n-Einstein manifold. O

4. We-semisymmetric (LPK),
Definition 4.1. A Lorentzian para-Kenmotsu manifold (LPK),, M is said to
be Wr-semisymmetric if it satisfies the following condition [21]:

(R(X,)Y) - W) (Z, V)W =0, (4.1)
for every vector field X, Y, Z VW € x(M).

Theorem 4.2. If M is an Wyr-semisymmetric (LPK),, manifold, then it is
Ricci-flat.

Proof. The above relation can be written as
R(X, Y)YW(Z, V)W —W(R(X,Y)Z, V)W
W7 (Z, R(X, VW —W7(Z,V)R(X,Y)W = 0.
Now, putting X = ¢ in (4.2), we have
REYYWH(Z, VYW — W (R(E,Y)Z, V)W
W7 (Z, R, Y)VYW — W (Z,V)R(, Y)W = 0.
Using the equations (2.12), (2.21), (2.22), and (2.23) in (4.3), we have
g, Wr(Z,V)W)§ = n(W2(Z, VI)W)Y —2g(Y, Z)g(V, W)¢
W)Y 2V + sV Z)S(V.WE + n(Z) W (V. V)W

+9(Z,W)g(Y,V)§ — ﬁn(W)g(Y’ VIQZ +n(V)g(Z, Y)W 4
FZVAYVIV) = osn(V)a(V W)QZ + (W)W (Z V)Y =0
Setting V' = ¢ and using the equation (2.22) in (4.4), we get

—9(Z W)Y —g(Z, Y)W —n(W)g(Y, Z)§ — n(Z)n(W)Y
(4.5)

+ﬁ{n(W)S(Y7 2)E+n(Z)yn(W)QY +g(Y,W)QZ} = 0.
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Setting Z = £ into the above equation, we get
nW)QY = (n—1){g(Y, W)§ —n(Y)W}. (4.6)
Taking the inner product of (4.6) with T, we have
n(W)SY,T) = (n = D{n(T)g(Y, W) = n(¥Y)g(W,T)}. (4.7)
Replacing W by £ into the above equation, we get
S(X,Y) =0, (4.8)

for every X, Y € x(M). Hence, we have the result. d

5. ¢-Wr-symmetric (LPK), Manifolds

Definition 5.1. A Lorentzian para-Kenmotsu manifold is said to be ¢-Wr-
symmetric if it satisfies the following condition[21]:

@ ((VuWn)(X.Y)Z) = 0. (5.1)
for every X, Y, Z,U € x(M).

Theorem 5.2. If a (LPK),, is ¢-Wr-symmetric then the manifold reduces to
an Finstein manifold.

Proof. Differentiating (2.20) covariantly along U, we get

(VeWn)(X,Y)Z = <vUR><X7Y>Z+m—i1){g<Y7 2)(VoQ)X~(VuS)(Y, 2)X }.
(5.2)
Applying ¢#? on both sides and using (2.2), we have
(VoR)(X.Y)Z + (Vo R)(X,YV)2)E + 5 {o(V, 2)(Vo@)X s

+1(g(Y, Z)(Vu@Q)X)E ~ (VuS)(Y, 2)X ~ n((VuS)(Y, 2)X)¢} =0,
Using the equation (2.19) into the above equation, we have

(VuR)(X,Y)Z + (Vo R)(X,Y)Z) + m{gm 2)(VuQ)X
+9(Y, 2)S(X,U)e — (n— 1)g(Y, Z)g(X,U)¢ — (VuS)(V. 2)X  (54)
~ (VuS)(Y, 2)n(X)e} = 0.

Differentiating equation (2.11) covariantly along U, we get

n(VuR)(X,Y)Z) = g(R(X,Y)Z,U)+g(X, 2)g(Y,U)—g(Y, Z)g(X,U). (5.5)
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So, from (5.4), we have

(VUR)(X7 Y)Z + g(R(X7Y)Z, U>§ + g(X7 Z)g(Y, U)f

~g(¥, 2)g(X, V)¢ + {90, 2)(VuQ)X + 9(v. 2)S(X,U)¢ (56)

b
(=1
~(n = Dg(Y. 2)g(X, V)¢ ~ (VuS)(Y. 2)X — (VuS)(Y. Z)n(X)¢ } = 0.

Contracting the above equation along U, we get

n

Y @g(Ve, R)N(X,Y)Z,e:) + > e&R(X,Y, Z,e:)g(ei, )

i=1 i=1

n

+Y ag(X, 2)g(Y,e)g(é,e) = D eg(Y, Z)g(X, ei)g(ei, €)

1=1 =1
n 1 n
ezg Y Z V Q)X ez) (TL — 1 Zezg Y, Z)S(X 61) (61,5)
i=1 i=1
1

_9<Y7 Z) Z eig(Xv ei)g(ei’§> -

i=1

S (V.S D)%)

(n—1)

n

> (Ve )Y, Z)n(X)g(ei, &) = 0.

i=1

I
(n—1)

So, from the above equation, we have

(divR)(X,Y)Z + R(X,Y, Z,&) + 9(X, Z)n(Y) — g(Y, Z)n(X)

. 5.7
e - @xsm 2 oy <o Y
Using the equation (2.18) into the equation (5.7), we have
(n—2)
) (XY, 2) ~ (F¥S)(X, Z)t 5 salY. )X () o
1
X (VeS) (Y. 2) =0
Using the equation (2.19) into (5.8), we get
S(X,Y) = (n—1)g(X,Y) + %X(r)n(Y). (5.9)
Putting Y = £ into (5.9), we get X (r) = 0.
Hence, from (5.9), we get
S(X,Y)=(n—-1)g(X,Y). (5.10)

Hence, manifold M is an Einstein manifold. O
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6. ¢-Wr-flat (LPK),
Definition 6.1. A Lorentzian para-Kenmotsu manifold is said to be ¢p-Wr-flat
if,

Wr(¢X, Y, 9Z,oW) = 0. (6.1)
for all XY, Z € x(M).

Theorem 6.2. If an n-dimensional Lorentzian para-Kenmotsu manifold is ¢-
Wr-flat then the distribution defined by ¢ is null.

Proof.
R(X,Y,0Z,oW) = g(VxVy¢Z,¢W)—g(VyVx0Z, oW )—g(Vx y10Z, ¢W) = 0.
6.2
Now, using (2.8), we have 02
VxVy¢Z = Vx{—g(8Y, 2) —n(Z)oY + ¢(Vy Z)}. (6.3)
Using the equations (2.8), (2.9), and (2.10) into (6.3), we get
VxVyoZ =—g(Vx(8Y), 2)§ — g(¢Y,Vx Z2){ + g(9Y, Z) X
+9(oY, Z)n(X)€ + g(¢ X, Y)n(Z)§ +n(Y)n(Z)¢ X
= (Vxn)(Z2)¢Y —n(VxZ)pY —n(Z)p(VxY)
—9(¢X,VyZ)§ —n(Vy Z)pX + ¢(VxVy Z).
Taking inner product of (6.4) with ¢W, we have
9(VxVyoZ,oW) = g(8Y, Z)g(X, W) — (Vyn)(Z)g(¢Y, oW)
—n(VxZ)g(oY,oW) + n(Y)n(Z)g(¢ X, W)
—n(2)9(p(VxY),oW) = n(Vy Z)g(¢X, oW)
+ (9(d(VxVyZ), oW).

(6.5)

and
I(Vixy(02), W) = —n(Z)g(d(VxY), W) + n(Z)g(¢(Vy X), oW)

+9(0(Vixy12), oW).

So, from equation (6.2), we have

R(X.Y,0Z,¢W) = g(¢Y, Z)g(X, oW) — g(¢X, Z)g(Y, pW')

+ (Vyn)(2)g(¢X, oW — (Vxn)(Z)g(9Y, oW)
+0(Y)n(2)g(¢X, oW) — n(X)n(Z)g(oY, oW)
+9(B(R(X,Y)Z, ¢oW).

Using (2.2) and (2.6) in (6.7), we get

R(X,Y.$Z, W) - R(X,Y, Z,W) = g(#Y, Z)g(X, 6W) — g(6X, Z)g(Y. 6W)

- g(}/a Z)g(X7 W) +g(X7 Z)g(Y7 W)
(6.8)

(6.6)

(6.7)
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Interchanging X by Z and Y by W, in the equation (6.8), we have
R(Z,W.¢X,¢Y) = R(Z,W, X,Y) = g(¢W, X)g(Z,¢Y) — g(¢Z, X)g(W, $Y)

—gW, X)g(Z,Y) + g(X, Z)g(Y,W).
(6.9)

Subtracting (6.9) from (6.8), we get
R(X,Y,$Z,¢W) = R(Z, W, X, ¢Y). (6.10)
Replacing X by ¢X and Y by ¢Y in (6.10), we have
R(¢X,0Y,0Z, W) = R(X,Y, Z W) — n(X)n(Z)g(Y, W)
+0(X)n(W)g(Y, Z) +n(Y)n(Z)g(X, W) (6.11)
—n(Y)n(W)g(X, Z).
From (2.20), we have
W7 (9 X, 9Y,0Z,¢W) = R(¢X, Y, 0Z, W)

{96V 02)S(0X. W)  S(6Y.02)g(0X.0W) | =0 (612)
Using (2.4) and (2.17) in (6.12), we get
R(X,Y, Z, W) =n(X)n(Z)g(Y, W) +n(X)n(W)g(Y, Z)
=1V (W)X, 2) + g5 {o(¥. Z)S(XW) + (n = Dn(X)n(W)g(¥. 2)
(Y )(Z)S (X W) = g(X, W)S(Y, 2) = n(X)n(W)S(Y, 2)} = 0,

(6.13)

Contracting the above equation along X and W, we get
4(6Y,62) = 0. (6.14)
for all vector fields Y and Z on M. Hence, we have the result. O

7. A (LPK), admitting the condition W7(U,V)-R =0

Theorem 7.1. If a Lorentzian para-Kenmotsu manifold (LPK),, satisfies con-
dition W7(U,V') - R =0, then manifold reduces to an FEinstein manifold.

Proof. Let (LPK),, admits the condition
W+ (U, V) - R = 0. (7.1)

From the relation (7.1), we have

— R(X, W+(U,V)Y)Z — R(X,Y\W+(U,V)Z = 0. (7.2)
Putting Y = £ into the relation (7.2), we have
Wz(U, V)(R(X,§)Z) — R(W(U,V)X,£)Z
(7.3)
- R(X,W7(U,V)§)Z — R(X,§)W7(U, V) Z = 0.
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Now, we evaluate each term of (7.3).
Using (2.12) into (2.20), we get

1
oD 1)71(

n(Z)g(V, X)QU  (7.4)

Wz (U, V)(R(X,8)Z) = (X, Z)n(U)V — V)g(X, 2)QU

+n(Z)RU, V)X +

1
(n—1)
1

- —n(Z)S(V,X)U.

DS X)

The second, third and fourth terms are given by the equations (7.5), (7.6)
and (7.7) respectively.

RW(U,V)X,§)Z = —g(R(U,V)X, Z)§ — V, X)5(U, Z)¢

1
D 1)g(

+ LSV XU 2 HHZRUVIX (1

+ #n(Z)g(VvX)QU -

T NZ)S(V. X)U,

_
1)
R(X.WH(ULV)OZ = ~n(U)RXV)Z + epsn(VIRX.QU)Z. (76)

R(X, W2 (U,V)Z = —g(X, R(U, V) Z)¢ — 9(V, 2)S(X,U)¢

1
(n—1)
+ Til)s(v» Z)g(X,U)¢ +2g(V, Z)n(U)X (7.7)
1

=9, Z)n(V)X — m

SV, Z2)(U)X.
Using equations (7.4),(7.5),(7.6) and (7.7) in (7.3), we have

9(X, Z)n(U)V — n(V)g(X, 2)QU + g(R(U,V)X, Z)§

1
-1
+ eV XS 2)¢ -
~ G VIS(X.QUZ + (X, RU.V)2)6 + -0V 2)S(X. U
1
RCES
1

mS(W X)g(U, Z)¢ +n(U)R(X,V)Z

SV, 2)9(X,U)€ = 29(V, Z)n(U)X + g(U, Z)n(V) X

(7.8)
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Taking the inner product of (7.8) with W and contracting along X and W, we
get

n(U)g(V, 2) —n(V)g(U, Z) +n(U)S(V, Z)

- T VISQU.2) + a0)slV. 2) ~ o @IS(LZ) g
= 201(U)g(V, 2) + ng (U, 2)0(V) + (=5 SV, Z)(U) = 0.
Putting U = ¢ into (7.9), we have
S(\V,Z)=ng(V, Z), (7.10)

for all vector fields V, Z € x(M). Hence, the M is an Einstein manifold. O

8. Example

Let us consider a smooth manifold M = {(u,v,w,t) € R* : u,v,w is non-
zero, t > 0} of dimension 4, here (u,v,w,t) is the standard coordinates in R*.
Consider a set of linearly independent vector fields {1, &2, &3, &4} at every point
of the manifold M.

We define
0 0 0 0
_ Lutt 7 — v+t 7 — w+t 7 = .
61—6 au’§2 € 81}763 € 8w7£4 ot
Let g be the Lorentzian metric defined by
1, ifi=j#4
gij =40, ifi#j
-1, ifi =j =4,

Let n be the 1-form on M defined as n(X) = g(X, &) = g(X,€) for all X €
X (M) and let ¢ be the (1,1)-tensor field on M defined as

P& = &1, 082 = &2, P&z = &3, P& = 0. (8.1)

using the linear property of ¢ and g, we have
n(€) = —1,¢’X = X +n(X)&n(¢X) =0
9(X, &) =n(X),9(¢X,¢Y) = g(X,Y) +n(X)n(Y)

for all XY € x(M). This shows that the manifold M is equipped with a
Lorentzian paracontact structure. Hence the chosen manifold is a Lorentzian

(8.2)

para-contact manifold of dimension 4. The non-zero constituents of Lie brackets
are evaluated as

[€1,8] = —&1, (&2, &) = —&2,[€3,84] = —&5.
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The Riemannian connection V of the Lorentzian metric g is given by
29(VuV,W) =Ug(V,W) + Vg(W,U) = Wg(U,V) — g(U, [V,W])
+g(V, [W,U]) + g(W, [U, V]),
which is known as Koszul’s formula. we can easily calculate
Ve &1 = =64, Ve, 60 =0,V 63 =0,V 6y = —&1,
V.fzfl = O; Vfg&? = _547 Vf2£3 = Oa v§2£4 = _527
V§3§1 = 07 v§3€2 = 07 v£3£3 = 7§4a v§3§4 = 7537
V€4§1 = 07 V€4€2 = 07 V§4£3 = Oa V§4§4 = 07
Let X be any arbitrary vector field on M, Then
X =6 =G+ h+ G+
12 3 4

for some scalars c¢*, ¢?, ¢,

With the help of the above relation and using the linearity property of the
connection, we can easily verify that Vx&, = —X — n(X)&,.
Hence, M is a Lorentzian para-Kenmotsu manifold of dimension 4.
The non-vanishing components of the curvature tensor are evaluated as follows:

R(&1,62)61 = —&2, R(&1,83)61 = —&€3, R(&1,64)61 = &4,
R(&1,&)8 = &1, R(&2,83)62 = —&3, R(&2,84)62 = —&4,
R(&1,83)83 = &1, R(£2,83)83 = &, R(€3,64)€3 = —&u, (8.4)
R(&1,84)64 = —&1, R(&2,84)84 = —&2, R(£3,84)84 = —&3,
It can be easily seen that R(X,Y)Z = ¢g(Y,2)X — g(X, Z)Y.
Since,
S(X,Y) = g(R(&, X)Y, &) +9(R(€2, X)Y, E2)+9(R(E3, X)Y, §3)—g(R(Ea, X)Y, &4)

Using the equation (8.4), we can easily see that S(X,Y) = 3¢g(X,Y), It clearly
implies that (LPK)4 is an Einstein manifold, and using these relations, we see
that the relation ¢?((VyWr)(X,Y)Z) = 0 holds good.

9. Conclusion

In this work, we investigated various geometric conditions on (LPK),, man-
ifolds involving the Wy-curvature tensor and analyzed their consequences. Al-
though the results may appear individually structured, they collectively high-
light a deeper relationship between curvature constraints and the Ricci prop-
erties of Lorentzian para-Kenmotsu manifolds.

We began by establishing in Theorem 1 that a £&-Wy-flat (LPK),, manifold
is necessarily an n-Einstein manifold. Theorem 2 revealed that if the manifold
is Wr-semisymmetric, it becomes Ricci-flat. In Theorem 3, we proved that
under ¢-Wr-symmetry, the manifold reduces to an Einstein manifold, aligning
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with the curvature rigidity introduced by the symmetry. Theorem 4 adds a
structural interpretation by showing that the ¢-Wr-flat condition implies that
the distribution defined by ¢ is null. Finally, in Theorem 5, we demonstrated
that if the manifold satisfies the curvature condition W+(U,V) - R = 0, then it
again reduces to an Einstein manifold.

These results, while framed under different curvature assumptions, converge
toward a central theme: under various Wr-curvature constraints, Lorentzian
para-Kenmotsu manifolds tend to exhibit Einstein or Ricci-flat properties. This
observation not only strengthens the geometric significance of the W7-tensor in
such structures but also motivates further exploration of the curvature-induced
rigidity in paracontact geometry.
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