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Abstract. In this paper, we are going to study the characteristics of n-

dimensional Lorentzian para-Kenmotsu manifolds (briefly, (LPK)n) endowed

with the W7-curvature tensor. First, we analyzed (LPK)n manifolds under the

condition W7(X,Y, Z, ξ) = 0. Next, we explore (LPK)n manifolds satisfying

the W7-semisymmetric condition, φ-W7-symmetric condition, and φ-W7-flat

condition. Moreover, we discuss Lorentzian para-Kenmotsu manifolds under

the condition W7(U, V ) · R = 0, and prove that such manifolds reduce to Ein-

stein manifolds. Finally, all the relevant results have been verified through an

example.

Keywords: Lorentzian para-Kenmotsu manifold, W7-curvature tensor, Ricci

flat, Einstein manifold.

1. Introduction

The study of curvature tensors plays a fundamental role in differential geom-

etry, particularly in the context of various specialized manifolds. The concept

of curvature tensors is central to understanding the geometric and physical
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properties of differentiable manifolds. In this regard, the W7-curvature tensor,

introduced by G.P. Pokhariyal [1] in 1982, has been extensively explored in the

literature. This tensor, defined with the support of the Weyl curvature tensor,

has found significant applications in the study of Lorentzian para-Kenmotsu

manifolds.

Para-Kenmotsu manifolds were first introduced by B.B. Sinha and K.L. Sai

Prasad [8] in 1989, and since then, these manifolds have been a subject of con-

tinued research due to their intriguing geometric properties. In recent years,

Lorentzian para-Kenmotsu manifolds have garnered attention, particularly in

the study of invariant submanifolds and Ricci solitons. The seminal work by

Haseeb and Prasad [9] initiated the study of Lorentzian para-Kenmotsu man-

ifolds, and subsequent contributions by Atceken [2](2022) provided conditions

for invariant submanifolds to be totally geodesic. Ricci solitons, which rep-

resent self-similar solutions to the Ricci flow, have also been examined in the

context of these manifolds by Bagewadi [14, 15], Bejan and Crasmareanu [3],

Blaga [4] and many others (see also [16, 17, 18, 19]).

This paper is organized as follows: Section 1 provides the necessary back-

ground and historical developments related to the para-Kenmotsu manifolds,

Lorentzian para-Kenmotsu manifolds, and curvature tensors. Section 2 outlines

the fundamental preliminaries and essential results required for subsequent dis-

cussions. Section 3 delves into the condition W7(X,Y, Z, ξ) = 0 of Lorentzian

para-Kenmotsu manifolds. Section 4 examines the W7-semisymmetric condi-

tion of Lorentzian para-Kenmotsu manifolds. In section 5, we analyze the

φ-W7-symmetry condition in (LPK)n manifolds. Section 6 is devoted to the

study of φ-W7-flatness in Lorentzian para-Kenmotsu manifolds. Section 7, con-

siders Lorentzian para-Kenmotsu manifolds satisfying the condition, W7(U, V )·
R = 0 and shows that such manifolds reduce to an Einstein manifolds. Finally,

in section 8 we construct an example to verify the results.

Through this work, we aim to establish a foundational framework for the W7-

curvature tensor, offering new directions for research in differential geometry

and its applications in the study of special manifolds.

2. Preliminaries

2.1. Lorentzian almost paracontact metric manifold.

Definition 2.1. An n-dimensional differentiable manifold M equipped with a

structure (φ, ξ, η, g) is called a Lorentzian almost paracontact metric manifold

if it satisfies the following properties [21] :

η(ξ) = −1, (2.1)

φ2X = X + η(X)ξ, (2.2)

φξ = 0, η(φX) = 0, (2.3)
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g(φX, φY ) = g(X,Y ) + η(X)η(Y ), (2.4)

g(X, ξ) = η(X), (2.5)

Φ(X,Y ) = Φ(Y,X) = g(X,φY ). (2.6)

for any vector field X,Y on M , where φ is a (1,1) tensor field, ξ is a con-

travariant vector field also known as Reeb vector field, η is a 1-form, and g is

a Riemannian metric.

A Lorentzian para-Sasakian manifold is a Lorentzian almost paracontact

manifold if

(∇Xφ)Y = g(X,Y ) + η(Y )X + 2η(X)η(Y )ξ, (2.7)

2.2. Lorentzian Para-Kenmotsu Manifolds.

Definition 2.2. A Lorentzian almost paracontact metric manifold M is called

a Lorentzian para-Kenmotsu manifold if [9]

(∇Xφ)Y = −g(φX, Y )ξ − η(Y )φX. (2.8)

for any vector fields X,Y ∈M .

In a Lorentzian para-Kenmotsu manifold, denoted by (LPK)n, we have the

following fundamental relations:

∇Xξ = −X − η(X)ξ, (2.9)

(∇Xη)Y = −g(X,Y )− η(X)η(Y ), (2.10)

where ∇ is the Levi-Civita connection with respect to the Lorentzian metric g.

Curvature Properties :

On a Lorentzian para-Kenmotsu manifold M , the Riemannian Curvature ten-

sor R satisfies the following fundamental relations [9]:

g(R(X,Y )Z, ξ) = g(Y,Z)η(X)− g(X,Z)η(Y ), (2.11)

R(ξ,X)Y = −R(X, ξ)Y = g(X,Y )ξ − η(Y )X, (2.12)

R(X,Y )ξ = η(Y )X − η(X)Y, (2.13)

R(ξ,X)ξ = X + η(X)ξ, (2.14)

Ricci Tensor Properties :

The Ricci tensor S and Ricci operator Q on an (LPK)n manifold satisfy:

S(X, ξ) = (n− 1)η(X), (2.15)

Qξ = (n− 1)ξ, (2.16)

S(φX, φY ) = S(X,Y ) + (n− 1)η(X)η(Y ), (2.17)

Furthermore, by the second Bianchi identity, we obtain:

(divR)(X,Y, Z) = (∇XS)(Y, Z)− (∇Y S)(X,Z), (2.18)
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(∇US)(Z, ξ) = S(U,Z)− (n− 1)g(U,Z), (2.19)

where R, S, and Q denote the Riemannian curvature tensor, Ricci tensor, and

Ricci operator on (LPK)n manifold M , respectively.

2.3. The W7-Curvature Tensor.

Definition 2.3. The W7-curvature tensor on a Lorentzian para-Kenmotsu

manifold is defined by:[20]

W7(X,Y )Z = R(X,Y )Z +
1

n− 1

{
g(Y,Z)QX − S(Y, Z)X

}
. (2.20)

By substituting specific vector fields X = ξ into equation (2.20), we obtain

the following important relations:

W7(ξ, Y )Z = 2g(Y,Z)ξ − η(Z)Y − 1

(n− 1)
S(Y, Z)ξ. (2.21)

Setting Y = ξ:

W7(X, ξ)Z = −g(X,Z)ξ +
1

(n− 1)
η(Z)QX, (2.22)

and setting Z = ξ:

W7(X,Y )ξ = −η(X)Y +
1

(n− 1)
η(Y )QX. (2.23)

2.4. η-Einstein Manifold.

Definition 2.4. A Lorentzian para-Kenmotsu manifold M is said to be an

η-Einstein manifold if its Ricci tensor satisfies the following condition:

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ), (2.24)

where a and b are scalar functions on M . When b = 0, the manifold reduces

to an Einstein manifold.

3. (LPK)n with condition W7(X,Y, Z, ξ) = 0

Theorem 3.1. A ξ-W7-Flat (LPK)n is an η-Einstein manifold.

Proof. From (2.20), we have

W7(X,Y, Z, U) = R(X,Y, Z, U) +
1

n− 1

{
g(Y,Z)S(X,U)− S(Y, Z)g(X,U)

}
.

(3.1)

Putting U = ξ in (3.1) we have

W7(X,Y, Z, ξ) = R(X,Y, Z, ξ) +
1

n− 1

{
g(Y,Z)S(X, ξ)− S(Y,Z)g(X, ξ)

}
.

(3.2)



W7-curvature tensor on (LPK)n 35

By considering W7(X,Y, Z, ξ) = 0 in the above relation, we have

R(X,Y, Z, ξ) =
1

n− 1

{
S(Y,Z)g(X, ξ)− g(Y, Z)S(X, ξ)

}
. (3.3)

Using the equations (2.13) and (2.15) in the equation (3.3), we have

1

n− 1
η(X)S(Y,Z) = 2η(X)g(Y,Z)− η(Y )g(X,Z). (3.4)

Taking X = ξ in the (3.4), we get

S(Y, Z) = 2(n− 1)g(Y, Z) + (n− 1)η(Y )η(Z). (3.5)

Thus, manifold M is an η-Einstein manifold. �

4. W7-semisymmetric (LPK)n

Definition 4.1. A Lorentzian para-Kenmotsu manifold (LPK)n M is said to

be W7-semisymmetric if it satisfies the following condition [21]:

(R(X,Y ) ·W7)(Z, V )W = 0, (4.1)

for every vector field X,Y, Z, V,W ∈ χ(M).

Theorem 4.2. If M is an W7-semisymmetric (LPK)n manifold, then it is

Ricci-flat.

Proof. The above relation can be written as

R(X,Y )W7(Z, V )W −W7(R(X,Y )Z, V )W

−W7(Z,R(X,Y )V )W −W7(Z, V )R(X,Y )W = 0.
(4.2)

Now, putting X = ξ in (4.2), we have

R(ξ, Y )W7(Z, V )W −W7(R(ξ, Y )Z, V )W

−W7(Z,R(ξ, Y )V )W −W7(Z, V )R(ξ, Y )W = 0.
(4.3)

Using the equations (2.12), (2.21), (2.22), and (2.23) in (4.3), we have

g(Y,W7(Z, V )W )ξ − η(W7(Z, V )W )Y − 2g(Y, Z)g(V,W )ξ

+η(W )g(Y, Z)V +
1

(n− 1)
g(Y,Z)S(V,W )ξ + η(Z)W7(Y, V )W

+g(Z,W )g(Y, V )ξ − 1

(n− 1)
η(W )g(Y, V )QZ + η(V )g(Z, Y )W

+η(Z)V g(Y,W )− 1

(n− 1)
η(V )g(Y,W )QZ + η(W )W7(Z, V )Y = 0.

(4.4)

Setting V = ξ and using the equation (2.22) in (4.4), we get

−g(Z,W )Y − g(Z, Y )W − η(W )g(Y, Z)ξ − η(Z)η(W )Y

+
1

(n− 1)
{η(W )S(Y,Z)ξ + η(Z)η(W )QY + g(Y,W )QZ} = 0.

(4.5)
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Setting Z = ξ into the above equation, we get

η(W )QY = (n− 1){g(Y,W )ξ − η(Y )W}. (4.6)

Taking the inner product of (4.6) with T , we have

η(W )S(Y, T ) = (n− 1){η(T )g(Y,W )− η(Y )g(W,T )}. (4.7)

Replacing W by ξ into the above equation, we get

S(X,Y ) = 0, (4.8)

for every X,Y ∈ χ(M). Hence, we have the result. �

5. φ-W7-symmetric (LPK)n Manifolds

Definition 5.1. A Lorentzian para-Kenmotsu manifold is said to be φ-W7-

symmetric if it satisfies the following condition[21]:

φ2
(

(∇UW7)(X,Y )Z
)

= 0. (5.1)

for every X,Y, Z, U ∈ χ(M).

Theorem 5.2. If a (LPK)n is φ-W7-symmetric then the manifold reduces to

an Einstein manifold.

Proof. Differentiating (2.20) covariantly along U , we get

(∇UW7)(X,Y )Z = (∇UR)(X,Y )Z+
1

(n− 1)

{
g(Y, Z)(∇UQ)X−(∇US)(Y,Z)X

}
.

(5.2)

Applying φ2 on both sides and using (2.2), we have

(∇UR)(X,Y )Z + η((∇UR)(X,Y )Z)ξ +
1

(n− 1)

{
g(Y,Z)(∇UQ)X

+η(g(Y,Z)(∇UQ)X)ξ − (∇US)(Y, Z)X − η((∇US)(Y,Z)X)ξ
}

= 0,

(5.3)

Using the equation (2.19) into the above equation, we have

(∇UR)(X,Y )Z + η((∇UR)(X,Y )Z)ξ +
1

(n− 1)

{
g(Y,Z)(∇UQ)X

+ g(Y,Z)S(X,U)ξ − (n− 1)g(Y,Z)g(X,U)ξ − (∇US)(Y, Z)X

− (∇US)(Y,Z)η(X)ξ
}

= 0.

(5.4)

Differentiating equation (2.11) covariantly along U , we get

η((∇UR)(X,Y )Z) = g(R(X,Y )Z,U)+g(X,Z)g(Y,U)−g(Y,Z)g(X,U). (5.5)
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So, from (5.4), we have

(∇UR)(X,Y )Z + g(R(X,Y )Z,U)ξ + g(X,Z)g(Y,U)ξ

−g(Y,Z)g(X,U)ξ +
1

(n− 1)

{
g(Y,Z)(∇UQ)X + g(Y,Z)S(X,U)ξ

−(n− 1)g(Y,Z)g(X,U)ξ − (∇US)(Y,Z)X − (∇US)(Y, Z)η(X)ξ
}

= 0.

(5.6)

Contracting the above equation along U , we get

n∑
i=1

εig((∇eiR)(X,Y )Z, ei) +

n∑
i=1

εiR(X,Y, Z, ei)g(ei, ξ)

+

n∑
i=1

εig(X,Z)g(Y, ei)g(ξ, ei)−
n∑
i=1

εig(Y,Z)g(X, ei)g(ei, ξ)

+
1

(n− 1)

n∑
i=1

εig(Y,Z)g((∇eiQ)X, ei) +
1

(n− 1)

n∑
i=1

εig(Y,Z)S(X, ei)g(ei, ξ)

−g(Y,Z)

n∑
i=1

εig(X, ei)g(ei, ξ)−
1

(n− 1)

n∑
i=1

εig((∇eiS)(Y, Z)X, ei)

− 1

(n− 1)

n∑
i=1

εi(∇eiS)(Y, Z)η(X)g(ei, ξ) = 0.

So, from the above equation, we have

(divR)(X,Y )Z +R(X,Y, Z, ξ) + g(X,Z)η(Y )− g(Y, Z)η(X)

+
1

(n− 1)

{X(r)

2
g(Y, Z)− (∇XS)(Y, Z)− η(X)(∇ξS)(Y,Z)

}
= 0.

(5.7)

Using the equation (2.18) into the equation (5.7), we have

(n− 2)

(n− 1)
(∇XS)(Y,Z)− (∇Y S)(X,Z)+

1

2(n− 1)
g(Y,Z)X(r)

− 1

(n− 1)
η(X)(∇ξS)(Y,Z) = 0.

(5.8)

Using the equation (2.19) into (5.8), we get

S(X,Y ) = (n− 1)g(X,Y ) +
1

2
X(r)η(Y ). (5.9)

Putting Y = ξ into (5.9), we get X(r) = 0.

Hence, from (5.9), we get

S(X,Y ) = (n− 1)g(X,Y ). (5.10)

Hence, manifold M is an Einstein manifold. �
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6. φ-W7-flat (LPK)n

Definition 6.1. A Lorentzian para-Kenmotsu manifold is said to be φ-W7-flat

if,

W7(φX, φY, φZ, φW ) = 0. (6.1)

for all X,Y, Z ∈ χ(M).

Theorem 6.2. If an n-dimensional Lorentzian para-Kenmotsu manifold is φ-

W7-flat then the distribution defined by φ is null.

Proof.

R(X,Y, φZ, φW ) = g(∇X∇Y φZ, φW )−g(∇Y∇XφZ, φW )−g(∇[X,Y ]φZ, φW ) = 0.

(6.2)

Now, using (2.8), we have

∇X∇Y φZ = ∇X{−g(φY,Z)ξ − η(Z)φY + φ(∇Y Z)}. (6.3)

Using the equations (2.8), (2.9), and (2.10) into (6.3), we get

∇X∇Y φZ =− g(∇X(φY ), Z)ξ − g(φY,∇XZ)ξ + g(φY,Z)X

+ g(φY,Z)η(X)ξ + g(φX, Y )η(Z)ξ + η(Y )η(Z)φX

− (∇Xη)(Z)φY − η(∇XZ)φY − η(Z)φ(∇XY )

− g(φX,∇Y Z)ξ − η(∇Y Z)φX + φ(∇X∇Y Z).

(6.4)

Taking inner product of (6.4) with φW , we have

g(∇X∇Y φZ, φW ) = g(φY,Z)g(X,φW )− (∇Y η)(Z)g(φY, φW )

− η(∇XZ)g(φY, φW ) + η(Y )η(Z)g(φX, φW )

− η(Z)g(φ(∇XY ), φW )− η(∇Y Z)g(φX, φW )

+ (g(φ(∇X∇Y Z), φW ).

(6.5)

and

g(∇[X,Y ](φZ), φW ) = −η(Z)g(φ(∇XY ), φW ) + η(Z)g(φ(∇YX), φW )

+ g(φ(∇[X,Y ]Z), φW ).
(6.6)

So, from equation (6.2), we have

R(X,Y, φZ, φW ) = g(φY,Z)g(X,φW )− g(φX,Z)g(Y, φW )

+ (∇Y η)(Z)g(φX, φW − (∇Xη)(Z)g(φY, φW )

+ η(Y )η(Z)g(φX, φW )− η(X)η(Z)g(φY, φW )

+ g(φ(R(X,Y )Z, φW ).

(6.7)

Using (2.2) and (2.6) in (6.7), we get

R(X,Y, φZ, φW )−R(X,Y, Z,W ) = g(φY,Z)g(X,φW )− g(φX,Z)g(Y, φW )

− g(Y, Z)g(X,W ) + g(X,Z)g(Y,W ).

(6.8)
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Interchanging X by Z and Y by W , in the equation (6.8), we have

R(Z,W, φX, φY )−R(Z,W,X, Y ) = g(φW,X)g(Z, φY )− g(φZ,X)g(W,φY )

− g(W,X)g(Z, Y ) + g(X,Z)g(Y,W ).

(6.9)

Subtracting (6.9) from (6.8), we get

R(X,Y, φZ, φW ) = R(Z,W, φX, φY ). (6.10)

Replacing X by φX and Y by φY in (6.10), we have

R(φX, φY, φZ, φW ) = R(X,Y, Z,W )− η(X)η(Z)g(Y,W )

+ η(X)η(W )g(Y, Z) + η(Y )η(Z)g(X,W )

− η(Y )η(W )g(X,Z).

(6.11)

From (2.20), we have

W7(φX, φY, φZ, φW ) = R(φX, φY, φZ, φW )

+
1

(n− 1)

{
g(φY, φZ)S(φX, φW )− S(φY, φZ)g(φX, φW )

}
= 0. (6.12)

Using (2.4) and (2.17) in (6.12), we get

R(X,Y, Z,W )− η(X)η(Z)g(Y,W ) + η(X)η(W )g(Y,Z)

− η(Y )η(W )g(X,Z) +
1

(n− 1)
{g(Y,Z)S(X,W ) + (n− 1)η(X)η(W )g(Y, Z)

+ η(Y )η(Z)S(X,W )− g(X,W )S(Y, Z)− η(X)η(W )S(Y,Z)} = 0,

(6.13)

Contracting the above equation along X and W , we get

g(φY, φZ) = 0. (6.14)

for all vector fields Y and Z on M . Hence, we have the result. �

7. A (LPK)n admitting the condition W7(U, V ) ·R = 0

Theorem 7.1. If a Lorentzian para-Kenmotsu manifold (LPK)n satisfies con-

dition W7(U, V ) ·R = 0, then manifold reduces to an Einstein manifold.

Proof. Let (LPK)n admits the condition

W7(U, V ) ·R = 0. (7.1)

From the relation (7.1), we have

W7(U, V )(R(X,Y )Z)−R(W7(U, V )X,Y )Z

−R(X,W7(U, V )Y )Z −R(X,Y )W7(U, V )Z = 0.
(7.2)

Putting Y = ξ into the relation (7.2), we have

W7(U, V )(R(X, ξ)Z)−R(W7(U, V )X, ξ)Z

−R(X,W7(U, V )ξ)Z −R(X, ξ)W7(U, V )Z = 0.
(7.3)
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Now, we evaluate each term of (7.3).

Using (2.12) into (2.20), we get

W7(U, V )(R(X, ξ)Z) = g(X,Z)η(U)V − 1

(n− 1)
η(V )g(X,Z)QU

+ η(Z)R(U, V )X +
1

(n− 1)
η(Z)g(V,X)QU

− 1

(n− 1)
η(Z)S(V,X)U.

(7.4)

The second, third and fourth terms are given by the equations (7.5), (7.6)

and (7.7) respectively.

R(W7(U, V )X, ξ)Z = −g(R(U, V )X,Z)ξ − 1

(n− 1)
g(V,X)S(U,Z)ξ

+
1

(n− 1)
S(V,X)g(U,Z)ξ + η(Z)R(U, V )X

+
1

(n− 1)
η(Z)g(V,X)QU − 1

(n− 1)
η(Z)S(V,X)U,

(7.5)

R(X,W7(U, V )ξ)Z = −η(U)R(X,V )Z +
1

(n− 1)
η(V )R(X,QU)Z, (7.6)

R(X, ξ)W7(U, V )Z = −g(X,R(U, V )Z)ξ − 1

(n− 1)
g(V,Z)S(X,U)ξ

+
1

(n− 1)
S(V,Z)g(X,U)ξ + 2g(V,Z)η(U)X

− g(U,Z)η(V )X − 1

(n− 1)
S(V,Z)η(U)X.

(7.7)

Using equations (7.4),(7.5),(7.6) and (7.7) in (7.3), we have

g(X,Z)η(U)V − 1

(n− 1)
η(V )g(X,Z)QU + g(R(U, V )X,Z)ξ

+
1

(n− 1)
g(V,X)S(U,Z)ξ − 1

(n− 1)
S(V,X)g(U,Z)ξ + η(U)R(X,V )Z

− 1

(n− 1)
η(V )S(X,QU)Z + g(X,R(U, V )Z)ξ +

1

(n− 1)
g(V,Z)S(X,U)ξ

− 1

(n− 1)
S(V,Z)g(X,U)ξ − 2g(V,Z)η(U)X + g(U,Z)η(V )X

+
1

(n− 1)
S(V,Z)η(U)X = 0.

(7.8)
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Taking the inner product of (7.8) with W and contracting along X and W , we

get

η(U)g(V,Z)ξ − η(V )g(U,Z) + η(U)S(V,Z)

− 1

(n− 1)
η(V )S(QU,Z) + η(U)g(V,Z)− 1

(n− 1)
η(U)S(V,Z)

− 2nη(U)g(V,Z) + ng(U,Z)η(V ) +
n

(n− 1)
S(V,Z)η(U) = 0.

(7.9)

Putting U = ξ into (7.9), we have

S(V,Z) = ng(V,Z), (7.10)

for all vector fields V,Z ∈ χ(M). Hence, the M is an Einstein manifold. �

8. Example

Let us consider a smooth manifold M = {(u, v, w, t) ∈ R4 : u, v, w is non-

zero, t > 0} of dimension 4, here (u, v, w, t) is the standard coordinates in R4.

Consider a set of linearly independent vector fields {ξ1, ξ2, ξ3, ξ4} at every point

of the manifold M .

We define

ξ1 = eu+t
∂

∂u
, ξ2 = ev+t

∂

∂v
, ξ3 = ew+t ∂

∂w
, ξ4 =

∂

∂t
.

Let g be the Lorentzian metric defined by

gij =


1, if i = j 6= 4

0, if i 6= j

−1, if i = j = 4,

Let η be the 1-form on M defined as η(X) = g(X, ξ4) = g(X, ξ) for all X ∈
χ(M) and let φ be the (1, 1)-tensor field on M defined as

φξ1 = ξ1, φξ2 = ξ2, φξ3 = ξ3, φξ4 = 0. (8.1)

using the linear property of φ and g, we have

η(ξ) = −1, φ2X = X + η(X)ξ, η(φX) = 0

g(X, ξ) = η(X), g(φX, φY ) = g(X,Y ) + η(X)η(Y )
(8.2)

for all X,Y ∈ χ(M). This shows that the manifold M is equipped with a

Lorentzian paracontact structure. Hence the chosen manifold is a Lorentzian

para-contact manifold of dimension 4. The non-zero constituents of Lie brackets

are evaluated as

[ξ1, ξ4] = −ξ1, [ξ2, ξ4] = −ξ2, [ξ3, ξ4] = −ξ3.
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The Riemannian connection ∇ of the Lorentzian metric g is given by

2g(∇UV,W ) = Ug(V,W ) + V g(W,U)−Wg(U, V )− g(U, [V,W ])

+ g(V, [W,U ]) + g(W, [U, V ]),
(8.3)

which is known as Koszul’s formula. we can easily calculate

∇ξ1ξ1 = −ξ4,∇ξ1ξ2 = 0,∇ξ1ξ3 = 0,∇ξ1ξ4 = −ξ1,

∇ξ2ξ1 = 0,∇ξ2ξ2 = −ξ4,∇ξ2ξ3 = 0,∇ξ2ξ4 = −ξ2,
∇ξ3ξ1 = 0,∇ξ3ξ2 = 0,∇ξ3ξ3 = −ξ4,∇ξ3ξ4 = −ξ3,
∇ξ4ξ1 = 0,∇ξ4ξ2 = 0,∇ξ4ξ3 = 0,∇ξ4ξ4 = 0,

Let X be any arbitrary vector field on M , Then

X = ciξi = c1ξ1 + c2ξ2 + c3ξ3 + c4ξ4

for some scalars c1, c2, c3, c4.

With the help of the above relation and using the linearity property of the

connection, we can easily verify that ∇Xξ4 = −X − η(X)ξ4.

Hence, M is a Lorentzian para-Kenmotsu manifold of dimension 4.

The non-vanishing components of the curvature tensor are evaluated as follows:

R(ξ1, ξ2)ξ1 = −ξ2, R(ξ1, ξ3)ξ1 = −ξ3, R(ξ1, ξ4)ξ1 = −ξ4,

R(ξ1, ξ2)ξ2 = ξ1, R(ξ2, ξ3)ξ2 = −ξ3, R(ξ2, ξ4)ξ2 = −ξ4,
R(ξ1, ξ3)ξ3 = ξ1, R(ξ2, ξ3)ξ3 = ξ2, R(ξ3, ξ4)ξ3 = −ξ4, (8.4)

R(ξ1, ξ4)ξ4 = −ξ1, R(ξ2, ξ4)ξ4 = −ξ2, R(ξ3, ξ4)ξ4 = −ξ3,
It can be easily seen that R(X,Y )Z = g(Y,Z)X − g(X,Z)Y.

Since,

S(X,Y ) = g(R(ξ1, X)Y, ξ1)+g(R(ξ2, X)Y, ξ2)+g(R(ξ3, X)Y, ξ3)−g(R(ξ4, X)Y, ξ4)

Using the equation (8.4), we can easily see that S(X,Y ) = 3g(X,Y ), It clearly

implies that (LPK)4 is an Einstein manifold, and using these relations, we see

that the relation φ2((∇UW7)(X,Y )Z) = 0 holds good.

9. Conclusion

In this work, we investigated various geometric conditions on (LPK)n man-

ifolds involving the W7-curvature tensor and analyzed their consequences. Al-

though the results may appear individually structured, they collectively high-

light a deeper relationship between curvature constraints and the Ricci prop-

erties of Lorentzian para-Kenmotsu manifolds.

We began by establishing in Theorem 1 that a ξ-W7-flat (LPK)n manifold

is necessarily an η-Einstein manifold. Theorem 2 revealed that if the manifold

is W7-semisymmetric, it becomes Ricci-flat. In Theorem 3, we proved that

under φ-W7-symmetry, the manifold reduces to an Einstein manifold, aligning
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with the curvature rigidity introduced by the symmetry. Theorem 4 adds a

structural interpretation by showing that the φ-W7-flat condition implies that

the distribution defined by φ is null. Finally, in Theorem 5, we demonstrated

that if the manifold satisfies the curvature condition W7(U, V ) ·R = 0, then it

again reduces to an Einstein manifold.

These results, while framed under different curvature assumptions, converge

toward a central theme: under various W7-curvature constraints, Lorentzian

para-Kenmotsu manifolds tend to exhibit Einstein or Ricci-flat properties. This

observation not only strengthens the geometric significance of the W7-tensor in

such structures but also motivates further exploration of the curvature-induced

rigidity in paracontact geometry.
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