Study of W_7 - curvature tensor on $(LPK)_n$ manifolds

Shyam Kishor^a, Shivam Mishra^a* and Anoop Kumar Verma^a

^aDepartment of Mathematics and Astronomy, University of Lucknow, Lucknow U.P. India

E-mail: skishormath@gmail.com
E-mail: shivamsm31897@gmail.com
E-mail: anoop.verma1195@gmail.com

Abstract. In this paper, we are going to study the characteristics of n-dimensional Lorentzian para-Kenmotsu manifolds (briefly, $(LPK)_n$) endowed with the W_7 -curvature tensor. First, we analyzed $(LPK)_n$ manifolds under the condition $W_7(X,Y,Z,\xi)=0$. Next, we explore $(LPK)_n$ manifolds satisfying the W_7 -semisymmetric condition, ϕ - W_7 -symmetric condition, and ϕ - W_7 -flat condition. Moreover, we discuss Lorentzian para-Kenmotsu manifolds under the condition $W_7(U,V)\cdot R=0$, and prove that such manifolds reduce to Einstein manifolds. Finally, all the relevant results have been verified through an example.

Keywords: Lorentzian para-Kenmotsu manifold, W_7 -curvature tensor, Ricci flat, Einstein manifold.

1. Introduction

The study of curvature tensors plays a fundamental role in differential geometry, particularly in the context of various specialized manifolds. The concept of curvature tensors is central to understanding the geometric and physical

^{*}Corresponding Author AMS 2020 Mathematics Subject Classification: 53C25, 53C50

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright © 2026 The Author(s). Published by University of Mohaghegh Ardabili

properties of differentiable manifolds. In this regard, the W_7 -curvature tensor, introduced by G.P. Pokhariyal [1] in 1982, has been extensively explored in the literature. This tensor, defined with the support of the Weyl curvature tensor, has found significant applications in the study of Lorentzian para-Kenmotsu manifolds.

Para-Kenmotsu manifolds were first introduced by B.B. Sinha and K.L. Sai Prasad [8] in 1989, and since then, these manifolds have been a subject of continued research due to their intriguing geometric properties. In recent years, Lorentzian para-Kenmotsu manifolds have garnered attention, particularly in the study of invariant submanifolds and Ricci solitons. The seminal work by Haseeb and Prasad [9] initiated the study of Lorentzian para-Kenmotsu manifolds, and subsequent contributions by Atceken [2](2022) provided conditions for invariant submanifolds to be totally geodesic. Ricci solitons, which represent self-similar solutions to the Ricci flow, have also been examined in the context of these manifolds by Bagewadi [14, 15], Bejan and Crasmareanu [3], Blaga [4] and many others (see also [16, 17, 18, 19]).

This paper is organized as follows: Section 1 provides the necessary background and historical developments related to the para-Kenmotsu manifolds, Lorentzian para-Kenmotsu manifolds, and curvature tensors. Section 2 outlines the fundamental preliminaries and essential results required for subsequent discussions. Section 3 delves into the condition $W_7(X,Y,Z,\xi)=0$ of Lorentzian para-Kenmotsu manifolds. Section 4 examines the W_7 -semisymmetric condition of Lorentzian para-Kenmotsu manifolds. In section 5, we analyze the ϕ - W_7 -symmetry condition in $(LPK)_n$ manifolds. Section 6 is devoted to the study of ϕ - W_7 -flatness in Lorentzian para-Kenmotsu manifolds. Section 7, considers Lorentzian para-Kenmotsu manifolds satisfying the condition, $W_7(U,V)$ -R=0 and shows that such manifolds reduce to an Einstein manifolds. Finally, in section 8 we construct an example to verify the results.

Through this work, we aim to establish a foundational framework for the W_7 curvature tensor, offering new directions for research in differential geometry
and its applications in the study of special manifolds.

2. Preliminaries

2.1. Lorentzian almost paracontact metric manifold.

Definition 2.1. An n-dimensional differentiable manifold M equipped with a structure (ϕ, ξ, η, g) is called a Lorentzian almost paracontact metric manifold if it satisfies the following properties [21]:

$$\eta(\xi) = -1,\tag{2.1}$$

$$\phi^2 X = X + \eta(X)\xi,\tag{2.2}$$

$$\phi \xi = 0, \eta(\phi X) = 0, \tag{2.3}$$

$$W_7$$
-curvature tensor on $(LPK)_n$

$$g(\phi X, \phi Y) = g(X, Y) + \eta(X)\eta(Y), \tag{2.4}$$

$$g(X,\xi) = \eta(X),\tag{2.5}$$

$$\Phi(X,Y) = \Phi(Y,X) = q(X,\phi Y). \tag{2.6}$$

for any vector field X,Y on M, where ϕ is a (1,1) tensor field, ξ is a contravariant vector field also known as Reeb vector field, η is a 1-form, and g is a Riemannian metric.

A Lorentzian para-Sasakian manifold is a Lorentzian almost paracontact manifold if

$$(\nabla_X \phi) Y = g(X, Y) + \eta(Y) X + 2\eta(X) \eta(Y) \xi, \tag{2.7}$$

2.2. Lorentzian Para-Kenmotsu Manifolds.

Definition 2.2. A Lorentzian almost paracontact metric manifold M is called a Lorentzian para-Kenmotsu manifold if [9]

$$(\nabla_X \phi) Y = -g(\phi X, Y) \xi - \eta(Y) \phi X. \tag{2.8}$$

for any vector fields $X, Y \in M$.

In a Lorentzian para-Kenmotsu manifold, denoted by $(LPK)_n$, we have the following fundamental relations:

$$\nabla_X \xi = -X - \eta(X)\xi,\tag{2.9}$$

$$(\nabla_X \eta) Y = -g(X, Y) - \eta(X) \eta(Y), \tag{2.10}$$

where ∇ is the Levi-Civita connection with respect to the Lorentzian metric g.

Curvature Properties:

On a Lorentzian para-Kenmotsu manifold M, the Riemannian Curvature tensor R satisfies the following fundamental relations [9]:

$$g(R(X,Y)Z,\xi) = g(Y,Z)\eta(X) - g(X,Z)\eta(Y),$$
 (2.11)

$$R(\xi, X)Y = -R(X, \xi)Y = q(X, Y)\xi - \eta(Y)X,$$
 (2.12)

$$R(X,Y)\xi = \eta(Y)X - \eta(X)Y, \tag{2.13}$$

$$R(\xi, X)\xi = X + \eta(X)\xi, \tag{2.14}$$

Ricci Tensor Properties:

The Ricci tensor S and Ricci operator Q on an $(LPK)_n$ manifold satisfy:

$$S(X,\xi) = (n-1)\eta(X),$$
 (2.15)

$$Q\xi = (n-1)\xi,\tag{2.16}$$

$$S(\phi X, \phi Y) = S(X, Y) + (n-1)\eta(X)\eta(Y), \tag{2.17}$$

Furthermore, by the second Bianchi identity, we obtain:

$$(divR)(X,Y,Z) = (\nabla_X S)(Y,Z) - (\nabla_Y S)(X,Z), \tag{2.18}$$

$$(\nabla_U S)(Z, \xi) = S(U, Z) - (n - 1)g(U, Z), \tag{2.19}$$

where R, S, and Q denote the Riemannian curvature tensor, Ricci tensor, and Ricci operator on $(LPK)_n$ manifold M, respectively.

2.3. The W_7 -Curvature Tensor.

Definition 2.3. The W_7 -curvature tensor on a Lorentzian para-Kenmotsu manifold is defined by: [20]

$$W_7(X,Y)Z = R(X,Y)Z + \frac{1}{n-1} \Big\{ g(Y,Z)QX - S(Y,Z)X \Big\}.$$
 (2.20)

By substituting specific vector fields $X = \xi$ into equation (2.20), we obtain the following important relations:

$$W_7(\xi, Y)Z = 2g(Y, Z)\xi - \eta(Z)Y - \frac{1}{(n-1)}S(Y, Z)\xi.$$
 (2.21)

Setting $Y = \xi$:

$$W_7(X,\xi)Z = -g(X,Z)\xi + \frac{1}{(n-1)}\eta(Z)QX,$$
(2.22)

and setting $Z = \xi$:

$$W_7(X,Y)\xi = -\eta(X)Y + \frac{1}{(n-1)}\eta(Y)QX. \tag{2.23}$$

2.4. η -Einstein Manifold.

Definition 2.4. A Lorentzian para-Kenmotsu manifold M is said to be an η -Einstein manifold if its Ricci tensor satisfies the following condition:

$$S(X,Y) = ag(X,Y) + b\eta(X)\eta(Y), \tag{2.24}$$

where a and b are scalar functions on M. When b = 0, the manifold reduces to an Einstein manifold.

3. $(LPK)_n$ with condition $W_7(X,Y,Z,\xi)=0$

Theorem 3.1. A ξ -W₇-Flat $(LPK)_n$ is an η -Einstein manifold.

Proof. From (2.20), we have

$$W_7(X,Y,Z,U) = R(X,Y,Z,U) + \frac{1}{n-1} \Big\{ g(Y,Z)S(X,U) - S(Y,Z)g(X,U) \Big\}.$$
(3.1)

Putting $U = \xi$ in (3.1) we have

$$W_7(X,Y,Z,\xi) = R(X,Y,Z,\xi) + \frac{1}{n-1} \Big\{ g(Y,Z)S(X,\xi) - S(Y,Z)g(X,\xi) \Big\}.$$
(3.2)

By considering $W_7(X, Y, Z, \xi) = 0$ in the above relation, we have

$$R(X, Y, Z, \xi) = \frac{1}{n-1} \Big\{ S(Y, Z) g(X, \xi) - g(Y, Z) S(X, \xi) \Big\}.$$
 (3.3)

Using the equations (2.13) and (2.15) in the equation (3.3), we have

$$\frac{1}{n-1}\eta(X)S(Y,Z) = 2\eta(X)g(Y,Z) - \eta(Y)g(X,Z). \tag{3.4}$$

Taking $X = \xi$ in the (3.4), we get

$$S(Y,Z) = 2(n-1)g(Y,Z) + (n-1)\eta(Y)\eta(Z). \tag{3.5}$$

Thus, manifold \mathcal{M} is an η -Einstein manifold.

4. W_7 -semisymmetric $(LPK)_n$

Definition 4.1. A Lorentzian para-Kenmotsu manifold $(LPK)_n$ M is said to be W_7 -semisymmetric if it satisfies the following condition [21]:

$$(R(X,Y) \cdot W_7)(Z,V)W = 0,$$
 (4.1)

for every vector field $X, Y, Z, V, W \in \chi(M)$.

Theorem 4.2. If M is an W_7 -semisymmetric $(LPK)_n$ manifold, then it is Ricci-flat.

Proof. The above relation can be written as

$$R(X,Y)W_7(Z,V)W - W_7(R(X,Y)Z,V)W - W_7(Z,R(X,Y)V)W - W_7(Z,V)R(X,Y)W = 0.$$
(4.2)

Now, putting $X = \xi$ in (4.2), we have

$$R(\xi, Y)W_7(Z, V)W - W_7(R(\xi, Y)Z, V)W - W_7(Z, R(\xi, Y)V)W - W_7(Z, V)R(\xi, Y)W = 0.$$
(4.3)

Using the equations (2.12), (2.21), (2.22), and (2.23) in (4.3), we have

$$g(Y, W_7(Z, V)W)\xi - \eta(W_7(Z, V)W)Y - 2g(Y, Z)g(V, W)\xi$$

$$+\eta(W)g(Y,Z)V + \frac{1}{(n-1)}g(Y,Z)S(V,W)\xi + \eta(Z)W_{7}(Y,V)W +g(Z,W)g(Y,V)\xi - \frac{1}{(n-1)}\eta(W)g(Y,V)QZ + \eta(V)g(Z,Y)W$$
(4.4)

$$+\eta(Z)Vg(Y,W) - \frac{1}{(n-1)}\eta(V)g(Y,W)QZ + \eta(W)W_7(Z,V)Y = 0.$$

Setting $V = \xi$ and using the equation (2.22) in (4.4), we get

$$-g(Z,W)Y - g(Z,Y)W - \eta(W)g(Y,Z)\xi - \eta(Z)\eta(W)Y + \frac{1}{(n-1)}\{\eta(W)S(Y,Z)\xi + \eta(Z)\eta(W)QY + g(Y,W)QZ\} = 0.$$
(4.5)

Setting $Z = \xi$ into the above equation, we get

$$\eta(W)QY = (n-1)\{g(Y,W)\xi - \eta(Y)W\}. \tag{4.6}$$

Taking the inner product of (4.6) with T, we have

$$\eta(W)S(Y,T) = (n-1)\{\eta(T)g(Y,W) - \eta(Y)g(W,T)\}. \tag{4.7}$$

Replacing W by ξ into the above equation, we get

$$S(X,Y) = 0, (4.8)$$

for every $X, Y \in \chi(M)$. Hence, we have the result.

5. ϕ -W₇-symmetric $(LPK)_n$ Manifolds

Definition 5.1. A Lorentzian para-Kenmotsu manifold is said to be ϕ -W₇-symmetric if it satisfies the following condition[21]:

$$\phi^2\Big((\nabla_U W_7)(X,Y)Z\Big) = 0. \tag{5.1}$$

for every $X, Y, Z, U \in \chi(M)$.

Theorem 5.2. If a $(LPK)_n$ is ϕ -W₇-symmetric then the manifold reduces to an Einstein manifold.

Proof. Differentiating (2.20) covariantly along U, we get

$$(\nabla_{U}W_{7})(X,Y)Z = (\nabla_{U}R)(X,Y)Z + \frac{1}{(n-1)} \Big\{ g(Y,Z)(\nabla_{U}Q)X - (\nabla_{U}S)(Y,Z)X \Big\}.$$
(5.2)

Applying ϕ^2 on both sides and using (2.2), we have

$$(\nabla_U R)(X,Y)Z + \eta((\nabla_U R)(X,Y)Z)\xi + \frac{1}{(n-1)} \Big\{ g(Y,Z)(\nabla_U Q)X + \eta(g(Y,Z)(\nabla_U Q)X)\xi - (\nabla_U S)(Y,Z)X - \eta((\nabla_U S)(Y,Z)X)\xi \Big\} = 0,$$

$$(5.3)$$

Using the equation (2.19) into the above equation, we have

$$(\nabla_{U}R)(X,Y)Z + \eta((\nabla_{U}R)(X,Y)Z)\xi + \frac{1}{(n-1)} \Big\{ g(Y,Z)(\nabla_{U}Q)X + g(Y,Z)S(X,U)\xi - (n-1)g(Y,Z)g(X,U)\xi - (\nabla_{U}S)(Y,Z)X - (\nabla_{U}S)(Y,Z)\eta(X)\xi \Big\} = 0.$$
 (5.4)

Differentiating equation (2.11) covariantly along U, we get

$$\eta((\nabla_U R)(X, Y)Z) = g(R(X, Y)Z, U) + g(X, Z)g(Y, U) - g(Y, Z)g(X, U).$$
 (5.5)

So, from (5.4), we have

$$(\nabla_{U}R)(X,Y)Z + g(R(X,Y)Z,U)\xi + g(X,Z)g(Y,U)\xi$$
$$-g(Y,Z)g(X,U)\xi + \frac{1}{(n-1)} \Big\{ g(Y,Z)(\nabla_{U}Q)X + g(Y,Z)S(X,U)\xi - (n-1)g(Y,Z)g(X,U)\xi - (\nabla_{U}S)(Y,Z)X - (\nabla_{U}S)(Y,Z)\eta(X)\xi \Big\} = 0.$$
 (5.6)

Contracting the above equation along U, we get

$$\begin{split} \sum_{i=1}^{n} \epsilon_{i} g((\nabla_{e_{i}} R)(X,Y)Z, e_{i}) + \sum_{i=1}^{n} \epsilon_{i} R(X,Y,Z,e_{i}) g(e_{i},\xi) \\ + \sum_{i=1}^{n} \epsilon_{i} g(X,Z) g(Y,e_{i}) g(\xi,e_{i}) - \sum_{i=1}^{n} \epsilon_{i} g(Y,Z) g(X,e_{i}) g(e_{i},\xi) \\ + \frac{1}{(n-1)} \sum_{i=1}^{n} \epsilon_{i} g(Y,Z) g((\nabla_{e_{i}} Q)X,e_{i}) + \frac{1}{(n-1)} \sum_{i=1}^{n} \epsilon_{i} g(Y,Z) S(X,e_{i}) g(e_{i},\xi) \\ - g(Y,Z) \sum_{i=1}^{n} \epsilon_{i} g(X,e_{i}) g(e_{i},\xi) - \frac{1}{(n-1)} \sum_{i=1}^{n} \epsilon_{i} g((\nabla_{e_{i}} S)(Y,Z)X,e_{i}) \\ - \frac{1}{(n-1)} \sum_{i=1}^{n} \epsilon_{i} (\nabla_{e_{i}} S)(Y,Z) \eta(X) g(e_{i},\xi) = 0. \end{split}$$

So, from the above equation, we have

$$(divR)(X,Y)Z + R(X,Y,Z,\xi) + g(X,Z)\eta(Y) - g(Y,Z)\eta(X) + \frac{1}{(n-1)} \left\{ \frac{X(r)}{2} g(Y,Z) - (\nabla_X S)(Y,Z) - \eta(X)(\nabla_\xi S)(Y,Z) \right\} = 0.$$
 (5.7)

Using the equation (2.18) into the equation (5.7), we have

$$\frac{(n-2)}{(n-1)}(\nabla_X S)(Y,Z) - (\nabla_Y S)(X,Z) + \frac{1}{2(n-1)}g(Y,Z)X(r) - \frac{1}{(n-1)}\eta(X)(\nabla_\xi S)(Y,Z) = 0.$$
(5.8)

Using the equation (2.19) into (5.8), we get

$$S(X,Y) = (n-1)g(X,Y) + \frac{1}{2}X(r)\eta(Y).$$
 (5.9)

Putting $Y = \xi$ into (5.9), we get X(r) = 0.

Hence, from (5.9), we get

$$S(X,Y) = (n-1)g(X,Y). (5.10)$$

Hence, manifold \mathcal{M} is an Einstein manifold.

6. ϕ -W₇-flat $(LPK)_n$

Definition 6.1. A Lorentzian para-Kenmotsu manifold is said to be ϕ -W₇-flat if.

$$W_7(\phi X, \phi Y, \phi Z, \phi W) = 0. \tag{6.1}$$

for all $X, Y, Z \in \chi(M)$.

Theorem 6.2. If an n-dimensional Lorentzian para-Kenmotsu manifold is ϕ -W₇-flat then the distribution defined by ϕ is null.

Proof.

$$R(X, Y, \phi Z, \phi W) = g(\nabla_X \nabla_Y \phi Z, \phi W) - g(\nabla_Y \nabla_X \phi Z, \phi W) - g(\nabla_{[X,Y]} \phi Z, \phi W) = 0.$$
(6.2)

Now, using (2.8), we have

$$\nabla_X \nabla_Y \phi Z = \nabla_X \{ -g(\phi Y, Z)\xi - \eta(Z)\phi Y + \phi(\nabla_Y Z) \}. \tag{6.3}$$

Using the equations (2.8), (2.9), and (2.10) into (6.3), we get

$$\nabla_{X}\nabla_{Y}\phi Z = -g(\nabla_{X}(\phi Y), Z)\xi - g(\phi Y, \nabla_{X}Z)\xi + g(\phi Y, Z)X$$

$$+g(\phi Y, Z)\eta(X)\xi + g(\phi X, Y)\eta(Z)\xi + \eta(Y)\eta(Z)\phi X$$

$$-(\nabla_{X}\eta)(Z)\phi Y - \eta(\nabla_{X}Z)\phi Y - \eta(Z)\phi(\nabla_{X}Y)$$

$$-g(\phi X, \nabla_{Y}Z)\xi - \eta(\nabla_{Y}Z)\phi X + \phi(\nabla_{X}\nabla_{Y}Z).$$
(6.4)

Taking inner product of (6.4) with ϕW , we have

$$g(\nabla_{X}\nabla_{Y}\phi Z, \phi W) = g(\phi Y, Z)g(X, \phi W) - (\nabla_{Y}\eta)(Z)g(\phi Y, \phi W) - \eta(\nabla_{X}Z)g(\phi Y, \phi W) + \eta(Y)\eta(Z)g(\phi X, \phi W) - \eta(Z)g(\phi(\nabla_{X}Y), \phi W) - \eta(\nabla_{Y}Z)g(\phi X, \phi W) + (g(\phi(\nabla_{X}\nabla_{Y}Z), \phi W).$$

$$(6.5)$$

and

$$g(\nabla_{[X,Y]}(\phi Z), \phi W) = -\eta(Z)g(\phi(\nabla_X Y), \phi W) + \eta(Z)g(\phi(\nabla_Y X), \phi W) + g(\phi(\nabla_{[X,Y]} Z), \phi W).$$

$$(6.6)$$

So, from equation (6.2), we have

$$R(X,Y,\phi Z,\phi W) = g(\phi Y,Z)g(X,\phi W) - g(\phi X,Z)g(Y,\phi W)$$

$$+ (\nabla_Y \eta)(Z)g(\phi X,\phi W - (\nabla_X \eta)(Z)g(\phi Y,\phi W)$$

$$+ \eta(Y)\eta(Z)g(\phi X,\phi W) - \eta(X)\eta(Z)g(\phi Y,\phi W)$$

$$+ g(\phi(R(X,Y)Z,\phi W).$$

$$(6.7)$$

Using (2.2) and (2.6) in (6.7), we get

$$R(X, Y, \phi Z, \phi W) - R(X, Y, Z, W) = g(\phi Y, Z)g(X, \phi W) - g(\phi X, Z)g(Y, \phi W) - g(Y, Z)g(X, W) + g(X, Z)g(Y, W).$$
(6.8)

Interchanging X by Z and Y by W, in the equation (6.8), we have

$$R(Z, W, \phi X, \phi Y) - R(Z, W, X, Y) = g(\phi W, X)g(Z, \phi Y) - g(\phi Z, X)g(W, \phi Y) - g(W, X)g(Z, Y) + g(X, Z)g(Y, W).$$
(6.9)

Subtracting (6.9) from (6.8), we get

$$R(X, Y, \phi Z, \phi W) = R(Z, W, \phi X, \phi Y). \tag{6.10}$$

Replacing X by ϕX and Y by ϕY in (6.10), we have

$$R(\phi X, \phi Y, \phi Z, \phi W) = R(X, Y, Z, W) - \eta(X)\eta(Z)g(Y, W) + \eta(X)\eta(W)g(Y, Z) + \eta(Y)\eta(Z)g(X, W) - \eta(Y)\eta(W)g(X, Z).$$
(6.11)

From (2.20), we have

$$W_7(\phi X, \phi Y, \phi Z, \phi W) = R(\phi X, \phi Y, \phi Z, \phi W)$$
$$+ \frac{1}{(n-1)} \left\{ g(\phi Y, \phi Z) S(\phi X, \phi W) - S(\phi Y, \phi Z) g(\phi X, \phi W) \right\} = 0. \tag{6.12}$$

Using (2.4) and (2.17) in (6.12), we get

$$R(X,Y,Z,W) - \eta(X)\eta(Z)g(Y,W) + \eta(X)\eta(W)g(Y,Z)$$

$$- \eta(Y)\eta(W)g(X,Z) + \frac{1}{(n-1)}\{g(Y,Z)S(X,W) + (n-1)\eta(X)\eta(W)g(Y,Z)$$

$$+ \eta(Y)\eta(Z)S(X,W) - g(X,W)S(Y,Z) - \eta(X)\eta(W)S(Y,Z)\} = 0,$$
(6.13)

Contracting the above equation along X and W, we get

$$g(\phi Y, \phi Z) = 0. \tag{6.14}$$

for all vector fields Y and Z on M. Hence, we have the result.

7. A $(LPK)_n$ admitting the condition $W_7(U,V)\cdot R=0$

Theorem 7.1. If a Lorentzian para-Kenmotsu manifold $(LPK)_n$ satisfies condition $W_7(U, V) \cdot R = 0$, then manifold reduces to an Einstein manifold.

Proof. Let $(LPK)_n$ admits the condition

$$W_7(U,V) \cdot R = 0. \tag{7.1}$$

From the relation (7.1), we have

$$W_7(U,V)(R(X,Y)Z) - R(W_7(U,V)X,Y)Z - R(X,W_7(U,V)Y)Z - R(X,Y)W_7(U,V)Z = 0.$$
(7.2)

Putting $Y = \xi$ into the relation (7.2), we have

$$W_7(U,V)(R(X,\xi)Z) - R(W_7(U,V)X,\xi)Z - R(X,W_7(U,V)\xi)Z - R(X,\xi)W_7(U,V)Z = 0.$$
(7.3)

Now, we evaluate each term of (7.3). Using (2.12) into (2.20), we get

$$W_{7}(U,V)(R(X,\xi)Z) = g(X,Z)\eta(U)V - \frac{1}{(n-1)}\eta(V)g(X,Z)QU + \eta(Z)R(U,V)X + \frac{1}{(n-1)}\eta(Z)g(V,X)QU - \frac{1}{(n-1)}\eta(Z)S(V,X)U.$$
(7.4)

The second, third and fourth terms are given by the equations (7.5), (7.6) and (7.7) respectively.

$$R(W_{7}(U,V)X,\xi)Z = -g(R(U,V)X,Z)\xi - \frac{1}{(n-1)}g(V,X)S(U,Z)\xi$$

$$+ \frac{1}{(n-1)}S(V,X)g(U,Z)\xi + \eta(Z)R(U,V)X$$

$$+ \frac{1}{(n-1)}\eta(Z)g(V,X)QU - \frac{1}{(n-1)}\eta(Z)S(V,X)U,$$
(7.5)

$$R(X, W_7(U, V)\xi)Z = -\eta(U)R(X, V)Z + \frac{1}{(n-1)}\eta(V)R(X, QU)Z, \quad (7.6)$$

$$R(X,\xi)W_{7}(U,V)Z = -g(X,R(U,V)Z)\xi - \frac{1}{(n-1)}g(V,Z)S(X,U)\xi + \frac{1}{(n-1)}S(V,Z)g(X,U)\xi + 2g(V,Z)\eta(U)X - g(U,Z)\eta(V)X - \frac{1}{(n-1)}S(V,Z)\eta(U)X.$$
 (7.7)

Using equations (7.4),(7.5),(7.6) and (7.7) in (7.3), we have

$$g(X,Z)\eta(U)V - \frac{1}{(n-1)}\eta(V)g(X,Z)QU + g(R(U,V)X,Z)\xi$$

$$+ \frac{1}{(n-1)}g(V,X)S(U,Z)\xi - \frac{1}{(n-1)}S(V,X)g(U,Z)\xi + \eta(U)R(X,V)Z$$

$$- \frac{1}{(n-1)}\eta(V)S(X,QU)Z + g(X,R(U,V)Z)\xi + \frac{1}{(n-1)}g(V,Z)S(X,U)\xi$$

$$- \frac{1}{(n-1)}S(V,Z)g(X,U)\xi - 2g(V,Z)\eta(U)X + g(U,Z)\eta(V)X$$

$$+ \frac{1}{(n-1)}S(V,Z)\eta(U)X = 0.$$
(7.8)

Taking the inner product of (7.8) with W and contracting along X and W, we get

$$\eta(U)g(V,Z)\xi - \eta(V)g(U,Z) + \eta(U)S(V,Z)
- \frac{1}{(n-1)}\eta(V)S(QU,Z) + \eta(U)g(V,Z) - \frac{1}{(n-1)}\eta(U)S(V,Z)
- 2n\eta(U)g(V,Z) + ng(U,Z)\eta(V) + \frac{n}{(n-1)}S(V,Z)\eta(U) = 0.$$
(7.9)

Putting $U = \xi$ into (7.9), we have

$$S(V,Z) = ng(V,Z), \tag{7.10}$$

for all vector fields $V, Z \in \chi(M)$. Hence, the M is an Einstein manifold. \square

8. Example

Let us consider a smooth manifold $M = \{(u, v, w, t) \in R^4 : u, v, w \text{ is non-zero, } t > 0\}$ of dimension 4, here (u, v, w, t) is the standard coordinates in R^4 . Consider a set of linearly independent vector fields $\{\xi_1, \xi_2, \xi_3, \xi_4\}$ at every point of the manifold M.

We define

$$\xi_1 = e^{u+t} \frac{\partial}{\partial u}, \xi_2 = e^{v+t} \frac{\partial}{\partial v}, \xi_3 = e^{w+t} \frac{\partial}{\partial w}, \xi_4 = \frac{\partial}{\partial t}.$$

Let g be the Lorentzian metric defined by

$$g_{ij} = \begin{cases} 1, & \text{if } i = j \neq 4 \\ 0, & \text{if } i \neq j \\ -1, & \text{if } i = j = 4, \end{cases}$$

Let η be the 1-form on M defined as $\eta(X) = g(X, \xi_4) = g(X, \xi)$ for all $X \in \chi(M)$ and let ϕ be the (1, 1)-tensor field on M defined as

$$\phi \xi_1 = \xi_1, \phi \xi_2 = \xi_2, \phi \xi_3 = \xi_3, \phi \xi_4 = 0. \tag{8.1}$$

using the linear property of ϕ and g, we have

$$\eta(\xi) = -1, \phi^2 X = X + \eta(X)\xi, \eta(\phi X) = 0
g(X, \xi) = \eta(X), g(\phi X, \phi Y) = g(X, Y) + \eta(X)\eta(Y)$$
(8.2)

for all $X,Y \in \chi(M)$. This shows that the manifold M is equipped with a Lorentzian paracontact structure. Hence the chosen manifold is a Lorentzian para-contact manifold of dimension 4. The non-zero constituents of Lie brackets are evaluated as

$$[\xi_1, \xi_4] = -\xi_1, [\xi_2, \xi_4] = -\xi_2, [\xi_3, \xi_4] = -\xi_3.$$

The Riemannian connection ∇ of the Lorentzian metric g is given by

$$2g(\nabla_U V, W) = Ug(V, W) + Vg(W, U) - Wg(U, V) - g(U, [V, W]) + g(V, [W, U]) + g(W, [U, V]),$$
(8.3)

which is known as Koszul's formula. we can easily calculate

$$\begin{split} &\nabla_{\xi_1}\xi_1 = -\xi_4, \nabla_{\xi_1}\xi_2 = 0, \nabla_{\xi_1}\xi_3 = 0, \nabla_{\xi_1}\xi_4 = -\xi_1, \\ &\nabla_{\xi_2}\xi_1 = 0, \nabla_{\xi_2}\xi_2 = -\xi_4, \nabla_{\xi_2}\xi_3 = 0, \nabla_{\xi_2}\xi_4 = -\xi_2, \\ &\nabla_{\xi_3}\xi_1 = 0, \nabla_{\xi_3}\xi_2 = 0, \nabla_{\xi_3}\xi_3 = -\xi_4, \nabla_{\xi_3}\xi_4 = -\xi_3, \\ &\nabla_{\xi_4}\xi_1 = 0, \nabla_{\xi_4}\xi_2 = 0, \nabla_{\xi_4}\xi_3 = 0, \nabla_{\xi_4}\xi_4 = 0, \end{split}$$

Let X be any arbitrary vector field on M, Then

$$X = c^{i}\xi_{i} = c^{1}\xi_{1} + c^{2}\xi_{2} + c^{3}\xi_{3} + c^{4}\xi_{4}$$

for some scalars c^1, c^2, c^3, c^4 .

With the help of the above relation and using the linearity property of the connection, we can easily verify that $\nabla_X \xi_4 = -X - \eta(X)\xi_4$.

Hence, M is a Lorentzian para-Kenmotsu manifold of dimension 4.

The non-vanishing components of the curvature tensor are evaluated as follows:

$$R(\xi_{1}, \xi_{2})\xi_{1} = -\xi_{2}, R(\xi_{1}, \xi_{3})\xi_{1} = -\xi_{3}, R(\xi_{1}, \xi_{4})\xi_{1} = -\xi_{4},$$

$$R(\xi_{1}, \xi_{2})\xi_{2} = \xi_{1}, R(\xi_{2}, \xi_{3})\xi_{2} = -\xi_{3}, R(\xi_{2}, \xi_{4})\xi_{2} = -\xi_{4},$$

$$R(\xi_{1}, \xi_{3})\xi_{3} = \xi_{1}, R(\xi_{2}, \xi_{3})\xi_{3} = \xi_{2}, R(\xi_{3}, \xi_{4})\xi_{3} = -\xi_{4},$$

$$R(\xi_{1}, \xi_{4})\xi_{4} = -\xi_{1}, R(\xi_{2}, \xi_{4})\xi_{4} = -\xi_{2}, R(\xi_{3}, \xi_{4})\xi_{4} = -\xi_{3},$$

$$(8.4)$$

It can be easily seen that R(X,Y)Z = g(Y,Z)X - g(X,Z)Y. Since.

$$S(X,Y) = g(R(\xi_1,X)Y,\xi_1) + g(R(\xi_2,X)Y,\xi_2) + g(R(\xi_3,X)Y,\xi_3) - g(R(\xi_4,X)Y,\xi_4)$$

Using the equation (8.4), we can easily see that S(X,Y) = 3g(X,Y), It clearly implies that $(LPK)_4$ is an Einstein manifold, and using these relations, we see that the relation $\phi^2((\nabla_U W_7)(X,Y)Z) = 0$ holds good.

9. Conclusion

In this work, we investigated various geometric conditions on $(LPK)_n$ manifolds involving the W_7 -curvature tensor and analyzed their consequences. Although the results may appear individually structured, they collectively highlight a deeper relationship between curvature constraints and the Ricci properties of Lorentzian para-Kenmotsu manifolds.

We began by establishing in **Theorem 1** that a ξ - W_7 -flat $(LPK)_n$ manifold is necessarily an η -Einstein manifold. **Theorem 2** revealed that if the manifold is W_7 -semisymmetric, it becomes Ricci-flat. In **Theorem 3**, we proved that under ϕ - W_7 -symmetry, the manifold reduces to an Einstein manifold, aligning

with the curvature rigidity introduced by the symmetry. **Theorem 4** adds a structural interpretation by showing that the ϕ - W_7 -flat condition implies that the distribution defined by ϕ is null. Finally, in **Theorem 5**, we demonstrated that if the manifold satisfies the curvature condition $W_7(U,V) \cdot R = 0$, then it again reduces to an Einstein manifold.

These results, while framed under different curvature assumptions, converge toward a central theme: under various W_7 -curvature constraints, Lorentzian para-Kenmotsu manifolds tend to exhibit Einstein or Ricci-flat properties. This observation not only strengthens the geometric significance of the W_7 -tensor in such structures but also motivates further exploration of the curvature-induced rigidity in paracontact geometry.

Acknowledgment: The authors would like to thank the referee for some useful comments and their helpful suggestions that have improved the quality of this paper.

References

- G. P. Pokhariyal, Relativistic significance of curvature tensors, Int. J. Math. Math. Sci. 5(1) (1982), 133-139.
- M. Atceken, Some results on invariant submanifolds of Lorentzian para-Kenmotsu manifolds Korean J. Math. 30(1) (2022), 175-185.
- C. L. Bejan and M. Crasmareanu, Ricci solitons in manifolds with quasi-constant curvature. Publ. Math. Debrecen, 78(1) (2011), 235-243.
- 4. A. M. Blaga, η -Ricci solitons on para-Kenmotsu manifolds. ArXiv (Cornell University), 2014.
- A. Blaga, η-Ricci solitons on Lorentzian para-Sasakian manifolds. Filomat, 30(2) (2016), 489-496.
- G.P. Pokhariyal. Study of new curvature tensor in Sasakian manifold. Tensor, N.S., 36(1982), 222-226.
- A. Magnon, Semi-Riemannian Geometry with Applications to Relativity (Barrett O'Neill). SIAM Review, 28(2) (1986), 269-270.
- B.B. Sinha, and K.L.S. Sai Prasad, A class of almost para contact metric manifold, Bull. Calcutta. Math. Soc. 87(1995), 307-312.
- A. Haseeb and R. Prasad, Certain results on Lorentzian para-Kenmotsu manifolds. Bull. Paraan. Math. Soc. 39(3) (2021), 201-220.
- A. Singh and Shyam Kishor. Some Types of η-Ricci Solitons on Lorentzian Para-Sasakian manifolds. Facta. Univ. Ser. Math. Inf. 33(2) (2018), 217-217.
- Shyam Kishor and A. Singh, η-Ricci solitons on 3-dimensional Kenmotsu manifolds, Bull. Transilvania. Univ. Brasov. Ser. III Math. Comp. Sci. 13(62)(1) (2020), 209-218.
- C. S. Bagewadi, and G. Ingalahalli, Ricci solitons in Lorentzian-Sasakian manifolds. Acta Math. Acad. Paeda. Nyire. 28(2012), 59-68.
- 13. G. Ingalahalli and C.S. Bagewadi,
 Ricci Solitons in $\alpha\mbox{-}Sasakian$ manifolds. ISRN Geometry, 13.421384, 2012.
- 14. S. Kishor and P. Verma, Some Results On W_1 -Curvature tensor On (k,μ) Contact Space forms, 2018.

- R. Prasad, A. Haseeb, A. Verma, and V.S. Yadav, A study of φ-Ricci symmetric LP-Kenmotsu manifolds. Int. J. Maps. Math. Volume 7, Issue 1, Pages:33-44, 2024.
- A. Singh, S. Kishor, Curvature Properties of η-Riccci Solitons on Para-Kenmotsu Manifolds. Kyungpook. Math. Journal. 59(2019), 149-161.
- 17. S. Kishor and P. Verma, On W_7 -Curvature tensor of Generalized Sasakian Space Forms, Int. J. Math. Tren. Tech. 49(2017).
- S. Kishor and P. Verma, On W₀ Curvature Tensor of Generalized Sasakian-Space-Forms, JUSPS-A Vol. 29(10) (2017), 427-439.
- P. Alegre, Slant submanifolds of Lorentzian Sasakian and para Sasakian manifolds. Taiwanese. J. Math. 17(3) (2013), 897-910.
- M. M. Tripathi, P. Gupta, T-curvature tensor on a semi-Riemannian manifold, J. Adv. Math. Stud, 4(1) (2011), 117-129.
- U. C. De, R. N. Singh and S. K. Pandey, On the Conharmonic Curvature Tensor of Generalized Sasakian-Space-Forms, Int. Sch. Res. Notices, 1(2012), 876276.

Received: 29.04.2025 Accepted: 14.08.2025