
تعداد نشریات | 30 |
تعداد شمارهها | 426 |
تعداد مقالات | 3,753 |
تعداد مشاهده مقاله | 5,903,505 |
تعداد دریافت فایل اصل مقاله | 4,095,366 |
Some characterization of α-cosymplectic manifolds admitting hyperbolic Ricci solitons (HRS) | ||
Journal of Finsler Geometry and its Applications | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 28 مهر 1404 اصل مقاله (293.73 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22098/jfga.2025.17789.1169 | ||
نویسندگان | ||
Shahroud Azami1؛ ghodratallah Fasihi Ramandi* 1؛ Majid Ali Choudhary2 | ||
1Department of pure mathematics, Faculty of science, Imam Khomeini International University, Qazvin, Iran. | ||
2Department of Mathematics, School of Sciences, Maulana Azad National Urdu University, Hyderabad, India | ||
چکیده | ||
This work investigates α-cosymplectic and N(k)-contact metric (CM) manifolds equipped with an HRS. We derive some characterization properties for these manifolds. | ||
کلیدواژهها | ||
α-Cosymplectic Manifold؛ N(k)-CM Manifold؛ HRS | ||
مراجع | ||
1. S. Azami, Harmonic-hyperbolic geometric flow, Electron. J. Differential Equations.165(2017), 9 pp. 2. S. Azami, Hyperbolic Ricci-Bourguignon flow, Comput. Methods Differ. Equ. 9(2) (2021),399-409. 3. G. Fasihi-Ramandi, S. Azami, M. A. Choudhary, On hyperbolic Ricci solitons, Chaos,Solitons and Fractals, 193(2025), 116095. 4. D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics,509, Springer Verlag, Berlin-Newyork, (1976). 5. D. E. Blair, J. S. Kim, M. M. Tripathi, On the concircular curvature tensor of a contact metric manifold, J. Korean Math. Soc., 42(5) (2005), 883-992. 6. D. E. Blair, T. Koufogiorgos, B. J. Papantoniou, Contact metric manifold satisfying a nullity condition, Israel J. Math., 91(1995), 189-214. 7. S. Chaubey, M. Siddiqi and D. G. Prakasha, Invariant submanifolds of hyperbolic Sasakian manifolds and η-Ricci-Bourguignon solitons, Filomat, 36(2) (2022), 409-421. 8. B. Chow, P. Lu and L. Ni, Hamiltons Ricci flow, Graduate Studies in Mathematics,Amer. Math. Soc., Providence, RI, (2006). 9. W. R. Dai, D. X. Kong and K. Liu, Hyperbolic gometric flow (I): short-time existence and nonlinear stability, Pure. Appl. Math. Quarterly, 6(2010), 331-359. 10. U.C. De, A. Yildiz and S. Ghosh, On a class of N(k)-contact metric manifolds, Math.Rep. (Bucur.) 16(66) (2014), 207{217. 11. H. Faraji, S. Azami and Gh. Fasihi-Ramandi, h-almost Ricci solitons with concurrent potential fields, AIMS Math. 5(5) (2020), 4220-4228. 12. S. Hajiaghasi and S. Azami, Eigenvalue estimate for the Laplace operator on Finsler manifold with weighted Ricci curvature, J. Finsler Geom. Appl. 6(1) (2025), 36-47. 13. R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom.17(2) (1982), 255-306. 14. R. S. Hamilton, The Ricci flow on surfaces, Contemporary Mathematics, 71(1988), 237-261. 15. D. Kong and K. Liu, Wave character of metrics and hyperbolic geometric flow, J. Math.Phys. 48(2007), 103508-1-103508-14. 16. J. Lott, The work of Grigory Perelman, International Congress of Mathematicians, Vol.I, Eur. Math. Soc., Z¨urich, (2007), 66-76. 17. S. Tanno, Ricci curvatures of contact Riemannian manifolds, Tohoku Math. J., 40(1988),441-448. 18. H. I. Yoldas, S. E. Meric and E. Yasar, Some characteristics of α-cosymplectic manifolds admitting Yamabe soliton, Palestine Journal of Mathematics, 10(1) (2021), 234-241. | ||
آمار تعداد مشاهده مقاله: 4 تعداد دریافت فایل اصل مقاله: 2 |