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1. Introduction

Hamilton brought forth the Ricci solitons (RS) concept, expanding on Ein-
stein manifolds. Additionally, RS provides an analogous resolution for Ricci
flow (RF), an evolution formula governing the Riemannian manifold metrics
(M, go), given by

9gi;(t)
ot

= —2R;;(g(t)), 9(0) = go.
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In this case, it R;; stands for the Ricci curvature tensor (RC) associated
with g = g(¢). This topic has been the main focus of extensive research in
geometric analysis and differential geometry [13, 14]. When Perelman solved
the Poincaré conjecture and discovered that RS that acts as solutions to the
RF are gradient RS in compact, connected RMs, its significance increased sig-
nificantly [16]. Numerous nontrivial examples of compact and noncompact RS
have been identified [8]. The RF describes the thermal nature of the manifold
curvatures and metrics. Formally stated in [1], the hyperbolic Ricci flow (HRF)
is a framework of 2"%order non-linear growth PDE, comparable to the wave
equation flow metrics:

2
%g = —2Ric, g(0) = go, %(0) = ko, (1.1)
where kg is type-2 tensor field that is symmetric on M. The presence and
exclusivity of the equation (1.1) have been investigated within the framework
of closed RM in the research carried out by [9].

The pioneering work on HRF can be attributed to Kong and Liu, whose re-
search is detailed in [15]. As mentioned above, second-order nonlinear evolution
PDEs determine this flow. HRF is a geometric flow that models the evolution
of metrics and curvatures in manifolds, exhibiting wavelike properties.

Azami, in his work [2], investigated the hyperbolic Ricci-Bourguignon flow
in compact manifolds and established the uniqueness and existence of solutions
for this flow within a short time interval, subject to specific initial conditions.
He derived equations that describe how the Riemannian curvature tensor (RC)
and the scalar curvature (SC) of the manifold evolve under the influence of this
flow.

In a published study [7], Chaubey, Siddiqi, and Prakasha examined the
characteristics of n-Ricci-Bourguignon solitons on invariant submanifolds lo-
cated within hyperbolic Sasakian manifolds. They also verified several of their
theoretical results and gave a non-trivial instance of a 3-dim invariant subman-
ifold inside the same ambient space of dimension 5. In the setting of HRF, this
work explores the domain of self-similar solutions. Specifically, HRS. Building
upon our exploration of HRS, we focus our attention on their properties within
the specific geometric frameworks of a-cosymplectic and N (k)-CM manifolds.
In addition, certain characterization results will be demonstrated within these
manifolds.

2. Perliminaries

This section provides a concise overview of essential definitions and formulas
that will be utilized in subsequent sections.
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Definition 2.1. A Ricci soliton (RS) on (M™,g) is characterized by the exis-
tence of a smooth v.f. X on M™ fulfilling the criteria

Lxg+ 2Ric = 2ug, (2.1)

here, p represents a constant real number, while Ric stands for Ricci tensor
and Lx denotes the Lie derivative operator along X .

With (M™, g, X, ), we represent an RS. The aforementioned X is termed
a potential field for RS. An RS is classified as steady, shrinking, or expanding
according to whether the constant y is zero, positive, or negative, respectively.
Additionally, a RS is classified as a gradient soliton if

X =V/.

Here, f serves as the potential function of RS and X is a field. This allows
(2.1) to be restated as

Ric+ V?f = pg. (2.2)

Here, the Hessian of f is represented by V2 f [11][12]. Given a positive function
o(t) and a one-parameter family of diffecomorphisms ¢(t) on M to itself that
satisfies the following criteria, then a function g(¢) that solves the HRF on M"™
is called a HRS (or self-similar solution):

g(t) = a(t)p(t)"g(0). (2.3)

Definition 2.2. According to [3], a RM (M™,g) is termed as HRS structure
gwen X in M, along with real constants u and X\, that meet the following
criteria:

. 1
Rlc+/\£Xg+§(£Xo£X)(g):ug. (2.4)

We represent an HRS by (M, g, X, A\, #). An HRS can be categorized for pu:

e )\ =0 (steady)
e )\ < 0 (shrinking)
e )\ > 0 (expanding).
Next, we will review some definitions and fundamental equations related to
contact manifolds.
A smooth manifold M?"*! equipped by a nearly CM structure (¢,&,n,g)
becomes a nearly CM manifold, where g adheres to this specific condition:

¢*X = n(X)E-X, n(X) = g(X, ), no¢ = 0, »¢ =0, n€ =1.
(2.5)

g(¢X,Y) = —g(X, ¢Y),
g(dX,0X) =g(X,Y) —n(X)n(Y), (2.6)



Some characterization of a-cosymplectic manifolds admitting HRS 23

VX,Y € T(TM), here £ is the v.f., and 7 is the 1-form that corresponds to the g-
dual of &, and ¢ represents (1, 1)-tensor field on M. Moreover, the fundamental
2-form ® on M is described by [4]:

O(X,Y) =g(X, 0Y). (2.7)
Additionally, if the subsequent requirement is met
(X,Y)=dn(X,Y), (2.8)
a nearly CM manifold (M, ¢,£,n,g) is recognized as a CM manifold provided
dn(X,Y) = %{XW(Y) —n([X,Y]) = Yn(X)}. (2.9)
Define the Nijenhuis tensor field N, as follows:
No(X,Y) = ¢*[X, Y] + [6X, 6Y] — 9[6X, Y] — 6[X, 6V ]. (2.10)
As M is a nearly CM manifold and N, satisfies
2dn @+ Ny = 0, (2.11)

in this context, M is identified as a normal CM manifold. A standard CM
manifold M is described as Sasakian. A nearly CM manifold M is Sasakian iff

(Vx9)Y =g(X,Y){ —n(Y)X. (2.12)

Additionally, it follows for a Sasakian manifold,
Ve = —6X, (2.13)
R(X,Y)E = 5(Y)X — (@)Y, (2.14)

with V representing the L.C. connection and R symbolizing RC on M. In [6],
the (k, p)-nullity distribution on CM manifolds was put forward, defined as [0]

N(k,p): p = Nylk,p) = {7 € TLMIR(X,Y)Z = (T + ph)((&(Y, 2)X
~g(X, 2)Y)} (2.15)

with (k, p) belonging to R?, I representing the identity map, and h being the
(1,1)-tensor field described with

1

The h adheres to the next relationships:

he + ¢h = 0,
Vx{=—¢X — ohX,
h¢ =0, (2.16)
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and
g(hX,Y) =g(X,hY), (2.17)
n(hX) = 0. (2.18)
M equipped with a CM, is considered a (k, p)-CM manifold if £ is included

in the N(k, p). When the coefficient p is identically zero as in (2.15), N(k, p)
simplifies to the k-nullity distribution N(k), which is specified as [17]

N(k) :p = Ny(k) = {Z € T,M|R(X,Y)Z = k(g(Y, Z)X — g(X, Z)Y) }.
(2.19)
Moreover, when & € N(k), M possessing a CM structure, it is named an
N (k)-CM manifold [17]. This N(k)-CM manifold transforms into a Sasakian
manifold when &k = 1. When k = 0, and given n > 1, the manifold is locally
isometric to B! x S4, while it is flat when n =1 [5].
The following conditions were met for a N (k)-CM manifold:

Rie(X,Y) =[2nk —2(n — D)In(X)n(Y) +2(n — 1)g(X,Y) + 2(n — 1)g(hX,Y),

n>1, (2.20)
Ric(X, &) = 2nkn(X). (2.21)

Example 2.3. [10] We take into account the 3-dimensional manifold
M ={(z,y,2) €R® (z,y,2) # (0,0,0)}. (2.22)

Consider ey, es, and ez as linearly independent vector fields in R® that fulfill

le1,ea] = (1 + a)es, le1,e3] = —(1 — a)es and [e2, e3] = 2eq,
(2.23)

where a is any real number. Assume that the Riemannian metric g is given as:
glei,e) =1,
glei,ej) =0 for i#j.

We define n as a 1-form and ¢ as a (1,1)-tensor field, with the following
properties:

U(Z) = g(Z7 61)5
¢(62) = €3, ¢(63) = —eq, (b(el) = 0)
hey =0, hes = aes, hes = —aes. (2.24)

Employing Koszul’s formula for g yields:
Ve €1 = Ve e =V e3 =V, 60 =Ve,e3 =0,
Vesea = —(1 —a)eq, Veser = (1 —a)eq,
Ve,e1 = —(1+ a)es, Ve,e3 = (1+a)e. (2.25)
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Hence, (M, $,&,n,8) represents a 3-dim CM manifold.

In view of (2.25),
R(ay)es =0, R(ay)es =0, R(az)e; =0,
R(ay)es = (1 —a?)ey, R(ay)e; = —(1 — a?)ea,
R(az)es = (1 — a?)ey, R(az)e; = —(1 — a?)es,
R(as)es = —(1 — a®)ea, R(as)es = (1 — a?)es.

here a; = (e1,e2),as = (e1,e3) and as = (ea,e3). Hence, the above relations
show that M is a 3-dim N (1 — a?)-CM manifold.

(M, $,&,7n,9) with a normal CM is termed as cosymplectic if the subsequent

is true:
dnp=0, d®=0. (2.26)
Equivalently,
(Vx¢)Y =0, Vxé=0, VX,Y €(TM). (2.27)
If
dn =0, d® =2an N P, (2.28)

are met, it M is referred to as a a-cosypmlectic manifold, in which « represents
a real number. Equivalently,

(Vx@)Y = a(g(¢X,Y)§ —n(Y)eX), (2.29)
Vxé=—a¢’X. (2.30)
If @ = 0, it becomes evident that M qualifies as a cosymplectic manifold.

For o« € R with a # 0, M is called an a-Kenmotsu manifold. Moreover, an
a-cosymplectic manifold adheres to

R(X,Y)¢ = a*(n(X)Y —n(Y)X), (2.31)
R(X,6)Y = a®(g(X,Y)E = n(Y)X), (2.32)
R(X,Y)¢ = a*(n(X)€ - X), (2.33)
Ric(X,¢&) = —2na’n(X). (2.34)

Consider (M™,g) represent RM, here X (M) represents the Lie algebra of
smooth vector fields on M. A V € X (M) is referred to as a conformal v.f.
if

Ly =2fg. (2.35)

Let Ly is denoted by the Lie derivative associated with V. Suppose there are
functions a and b satisfying

(Ric = ag+ bE),
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where E is a non-zero symmetric (0,2)-tensor on M. In this case, (M,g) is
termed a nearly quasi-Einstein manifold [18]. Additionally, (M, g) is known as
an n-Einstein manifold if

(Ric=cg+dn®mn)

for some constants ¢ and d.
Finally, recall that V' on an RM is classified as concircular if it meets the
criteria:

ViV = fX (2.36)

VX eT(TM). If f =1,V is referred to as a concurrent vector field.

3. a-COSYMPLECTIC MANIFOLDS ADMITTING A HOMOGENEOUS RIEMANN-
IAN SoLITON (HRS)

This portion examines a-cosymplectic manifold (M) endowed with HRS.

Theorem 3.1. Consider M admits a HRS. M qualifies as a virtually quasi-
FEinstein manifold if the potential vector field V is pointwise aligned with &.

Proof. Consider (M, g, V, A\, 1) as an HRS in which V is pointwise aligned with
¢, implying V' = b€ for a smooth function b. Applying equations (2.5) and
(2.30), we find

Lyg(X,Y)=g(VxV,Y) +g(VyV,X) (3.1)
=g(X(b)E+bVxEY) +g(Y(b)E +bVyE, X)
=X(O)n(Y) + 2ba(g(X,Y) = n(X)n(Y) + Y (b)n(X)
=g(Vb, X)n(Y) + 2ba(g(X,Y) — n(X)n(Y)) + g(Vb, Y)n(X)

VX,Y € I'(TM),in which Vb stands for the gradient of b.
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From equation (3.1) and the definition of £, we can write

(Lv(Lvg))(X,Y) =V.Lyg(X.Y) - Lvg(LvX,Y) — Lvg(X, LyY)
= V.[8(Vb, X)n(Y) + (Vb Y )(X) + 2ba(g(X. Y)
—n(X)n(0))] = [V, Ly X)n(¥) + (Vb Y)n(Ly X)
+2ba(g(Ly X, Y) = n(Ly X)n(Y))] = [8(V6, X)n(LvY)

+8(Vb, Ly Y)n(X) + 2ba(g(X, LvY) — n(X)n(LvY))
=V.g(Vh, X)n(Y) +g(Vb, X)Vap(Y) + V.ig(Vh, Y)n(X)
+5(Vh, Y)Vo(X) + 2V (B)a(s(X, V) — n(X)n(Y)
+2baV.(5(X,Y) = n(X)n(Y)) - &(Vh, Ly X)n(Y)
—g(Vb,Y)n(LyY) — 2bag(Ly X, Y) + 2ban(Ly X )n(Y)
—g(Vb, Xn(LyY) —g(Vb, Ly Y )n(X) — 2bag(X, LyY)
+2ban(X)n(LyY).

By combining (2.4) and (3.2), we obtain

Ric(X,¥) = ua(X,Y) ~ £ (£y (L) (X.Y) ~ ALva(X.Y)
= (4~ V() ~ 2Xb0)a(X, ¥) — ZVa(Vb, X)n(¥)

—58(V0, X)Van(¥) — SVa(V0,Y)n(X) — 5a(Vb,Y)Vn(X)

+aV (0)n(X)n(Y) = baV.(g(X,Y) = n(X)n(Y)) + 1g(Vb, Ly X)n(Y)

—|—%g(Vb,Y) (LyX) +bag(Ly X,Y) — ban(Ly X)n(Y)
458070, X)LV Y) + 5(&(V0, £rY )(X)
+bag(X, LvY) — ban(X)n(LyY) — Ag(Vb, X)n(Y)
g5, Y)(X) + 2Aban(X)n(Y ),

27

(3.2)

(3.3)
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Also, specify a symmetric, non-vanishing tensor E of type (0,2) by
B(X,Y) =~ Via(Vb, X)n(Y) ~ 2a(Vb, X)Vn(Y)
~ SVE(DY)n(X) ~ Za(V0,Y)Vp(X) + aV (Bn(X)n(¥)
~ baV.(5(X,Y) ~ n(X)n(¥)) + 3a(Vb, Ly X)n(¥)
+ 580, Y)u(Ly X) + bag(Ly X, ¥) ~ ban(Ly X)n(Y)

+ 58V, X)Ly Y) + 5 (6(V0, Ly )n(X)
+ bag(X, LvY) — ban(X)n(LyY) — Ag(Vb, X)n(Y)

—Ag(Vb, Y)n(X) + 2 ban(X)n(Y). (3.4)

Equation (3.3) then takes the form
Ric(X,Y) = (u— aV(b) — 2\ba)g(X,Y) + E. (3.5)
Consequently, M is a manifold that is almost quasi-Einsteinian. (Il

Theorem 3.2. If M possesses a concircular vector field V, and if V acts as
the potential vector field for a homothetic Ricci soliton (HRS) on M, then

p=—2na®+V.f+2f% +2\f. (3.6)

Proof. Tt is evident that

VxV =fX (3.7)
VX € I'(T'M). Utilizing (3.7) follows:
(Lve)(X,Y) =g(VxV,Y) +g(X,VyV) (3-8)
=8(fX,Y) +g(X, fY)
=2fg(X,Y).

From equation (3.8) and the explanation of £, one can write
(Lv(Lvg))(X,Y) =V.Lyg(X,Y) = Lvg(LvX,Y) — Lvg(X,LyY)

=V.2fe(X.Y)) = 2fg(LvX.Y) — 2fg(X, LvY)

=2V.fg(X,Y) +2fVg(X,Y) - 2fg(Vy X - VxV,Y)
—2fg(X,VyY — VyV)

=2V.fe(X,Y) 4+ 2fg(Vv X,Y) + 2fg(X,VyY)
—2fg(VvX,Y) +2fg(VxV.Y) — 2fg(X,VvY)
+2fg(X,VyV)

=2V.fg(X)Y) +2fg(VxVY) + 2fg(X, Vy X)

=2V.fg(X,Y) +4f%g(X,Y). (3.9)
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By using (2.4) and (3.9):

Rice(X,Y) + V.fg(X, Y)Zfzg(X, Y)+2Afg(X,Y) = pug(X,Y). (3.10)
Substituting X =Y = ¢ in (3.10) and from (2.5) and (2.34), we have

= —2na? +V.f +2f% +2\f. (3.11)

O

Theorem 3.3. Given M has an HRS with £ as its potential vector field, then

p=—2na?. (3.12)

Proof. The definition of £ and the application of (2.30) yield the following
VX, Y e (TM):
(Leg)(X,Y) =g(Vx&,Y) +8(VyE X) (3.13)
=2a(g(X,Y) = n(X)n(Y)).
Furthermore, using the definition of L, results,

(Le(Leg))(X,Y) = ELeg(X,Y) — Leg(X, LeY) — Leg(V, Le X)),  (3.14)
and
§Leg(X,Y) = £.(8(VeX,Y) +8(X, VeY))

=g(VeVeX,Y) +g(VeX,VeY) + g(VeX, VeY) + (X, VeVeY).
(3.15)

Put X =Y = ¢ then, by combining (3.13) and (3.14) and V¢& = L€ =0, we
have

(Le(Lew))(€.€) = La(€,€) =0, (3.16)
Taking into account X =Y = ¢ in (2.4) and applying (3.16), we deduce
Ric(€,€) = pg(€,€).- (3.17)
Therefore, from (2.34) and (3.17), we get
= —2na?. (3.18)
(]

Theorem 3.4. Consider an N (k) CM manifold M that supports a HRS where
V' is both concircular and orthogonal to £&. (M, g, V, A\, u) is steady iff M is
locally isometric to E"t1 x S* for any n > 1, and it is flat when n = 1.
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Proof. Using the definition of £ and the property V¢ = 0, it follows that

(Lvg)(§:§) = 28(VeV,§) = 2Ve(g(V.€)) = 0. (3.19)
As on M, V constitutes a concircular vector field
VxV =fX (3.20)

for each X in I'(TM). By applying (3.20) together with the definition of L,
one can get

(‘CVg) (Xa Y) = 2fg(X7 Y)a
(Lve)(€, &) = 2fe(&,€) = 2f. (3.21)
From (3.19) and (3.21) we have f = 0. Further,

(Lv(Lyvg)(X,Y) =V.Lyg(X,)Y) - Lyg(Lv X,Y) — Lyg(X, LyvY), (3.22)

then Lyg = (Lyv(Lyg)) = 0. Using (2.4) and replacing X =Y = ¢ in (2.21)
results,

= 2nk, (3.23)
which concludes the proof. O

Remark 3.5. The previous theorem remains true when V' is a conformal vector
field perpendicular to &.
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