
تعداد نشریات | 30 |
تعداد شمارهها | 426 |
تعداد مقالات | 3,753 |
تعداد مشاهده مقاله | 5,903,515 |
تعداد دریافت فایل اصل مقاله | 4,095,373 |
Intrinsic Holmes-Thompson volumes and rigidity in Weil bundles | ||
Journal of Finsler Geometry and its Applications | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 28 مهر 1404 اصل مقاله (392.42 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22098/jfga.2025.17576.1161 | ||
نویسنده | ||
Tchuiaga Stephane* | ||
Department of Mathematics, University of Buea, South West Region, Cameroon | ||
چکیده | ||
This paper develops a framework for defining intrinsic volumes on manifolds M by leveraging the structure of Weil bundles MA associated with Weil algebras A. We explore constructions for a Finsler-like structure FA primarily on the fibers of MA, aiming to derive it from the algebraic properties of A with minimal reliance on auxiliary metrics on M. The concept of A-naturality is introduced to formalize the intrinsic nature of such structures. From this fiberwise FA, an effective Finsler structure FM on the tangent bundle TM is derived. The Busemann-Hausdorff measure dVF associated with FM then provides a volume form on M. We establish foundational results concerning conditions under which a diffeomorphism ø: M → M preserves dVF, linking this to the behavior of its prolongation øA and exploring resulting rigidity phenomena, including a characterization theorem for dVF under affine symmetries. Furthermore, we propose several significant conjectures and future research directions concerning infinitesimal symmetries, axiomatic uniqueness of these volumes, interactions with curvature, sub-Riemannian limits, and holonomy restrictions. | ||
کلیدواژهها | ||
Weil Bundles؛ Finsler Geometry؛ Holmes-Thompson Volume؛ Geometric Rigidity؛ Affine Transformations | ||
مراجع | ||
1. D. Bao, S.S. Chern, and Z. Shen, An introduction to Riemann-Finsler geometry,Springer-Verlag, Berlin, 2000. 2. I. Kol´a˘r, P. W. Michor and J. Slov´ak, Natural Operations in Differential Geometry,Springer, 1993. 3. A. Medvedev, Finsler Structures on Higher-Order Tangent Bundles, Journal of Geometric Analysis, 25(1) (2015), 193-217. 4. D.J. Saunders, The Geometry of Jet Bundles, Cambridge University Press, 1989. 5. S. Tchuiaga, M. Koivogui, and F. Balibuno, Metrizability and dynamics of Weil bundles,Afr. Mat. 36 (95) (2025), https://doi.org/10.1007/s13370-025-01309-6. 6. A. C. Thompson, Minkowski Geometry, Cambridge University Press, 1996. | ||
آمار تعداد مشاهده مقاله: 4 تعداد دریافت فایل اصل مقاله: 4 |