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Abstract. This paper develops a framework for defining intrinsic volumes

on manifolds M by leveraging the structure of Weil bundles MA associated

with Weil algebras A. We explore constructions for a Finsler-like structure FA
primarily on the fibers of MA, aiming to derive it from the algebraic proper-

ties of A with minimal reliance on auxiliary metrics on M . The concept of

A-naturality is introduced to formalize the intrinsic nature of such structures.

From this fiberwise FA, an effective Finsler structure FM on the tangent bundle

TM is derived. The Busemann-Hausdorff measure dVolFM associated with FM
then provides a volume form on M . We establish foundational results concern-

ing conditions under which a diffeomorphism φ : M → M preserves dVolFM ,

linking this to the behavior of its prolongation φA and exploring resulting rigid-

ity phenomena, including a characterization theorem for dVolFM under affine

symmetries. Furthermore, we propose several significant conjectures and future

research directions concerning infinitesimal symmetries, axiomatic uniqueness

of these volumes, interactions with curvature, sub-Riemannian limits, and ho-

lonomy restrictions.
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1. Introduction

The Holmes-Thompson volume offers a canonical approach to defining vol-

ume in Finsler geometry, intrinsically tied to a given Finsler structure F :

TM → R≥0 on a manifold M [6, 1]. This work seeks to extend and adapt

these ideas to the richer context of Weil bundles MA over M , associated with

a Weil algebra A [2]. Our primary goal is to investigate how the algebraic

structure of A can inform the geometry of M itself, particularly through the

definition of volume forms.

2. Preliminaries on Weil Bundles and Fibers

Our primary goal is to define a Finsler-like structure (a norm) FA : V A →
R≥0 on the fiber vector space V A ∼= An [2]. We aim for this norm to be ”intrin-

sic,” meaning it should be constructed primarily from the algebraic properties

of A and functorial principles, ideally without direct reference to an auxil-

iary Riemannian metric g on M . The argument x ∈ M in FA(x, v) is often

suppressed when defining the structure on the fiber V A, as this part of the

construction is intended to be independent of the base point.

Definition 2.1. [2] A Weil algebra A is a finite-dimensional, commutative,

associative, unital R-algebra of the form A = R ⊕ A, where A is a maximal

ideal satisfying Ak+1 = 0 for some k ≥ 1.

Definition 2.2. [2] Let M be a smooth manifold and A a Weil algebra. An

infinitely near point to x ∈ M of kind A is a smooth morphism of R-algebras

φ : C∞(M)→ A such that the following diagram commutes:

R⊕ A

C∞(M) R,

prRφ

evx

where evx is the evaluation map, defined by evx(f) := f(x), and prR is the

projection onto the real part of A.

We can construct the Weil bundle MA, which consists of all infinitely near

points to M of kind A. There exists a natural projection map πA : MA →M ,

mapping each infinitely near point to its base point. The triple (MA, πA,M)

equipped with the bundle topology, is known as the bundle of A-points near

to points in M [2, 5].

2.1. Intrinsic norms NA on the ideal A.

Definition 2.3. A norm NA is admissible if:

(1) Autgr(A)-invariant.

(2) Compatible with filtration: NA(α) ≥ cs‖α(s)‖.
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(3) Polynomial growth: NA(tα) ∼ |t|NA(α) as t→ 0.

We first focus on defining a norm NA : A → R≥0 on the maximal ideal A

itself, drawing from its algebraic structure. Assume A has a natural grading

(or admits one through a canonical choice, e.g., from a presentation of A):

A =
⊕k

s=1 As, where As are vector subspaces (the s-th order components), and

Ak+1 = {0} but Ak 6= {0}. An element α ∈ A decomposes as α =
∑k
s=1 α

(s),

where α(s) ∈ As. We define the norm NA on A as:

NA(α) =

(
k∑
s=1

λs

(
Ns(α

(s))
)p)1/p

, (2.1)

where p ≥ 1, λs > 0 are positive weights, chosen to respect symmetries of A

or by convention (e.g., λs = 1/(s!)p), and Ns : As → R≥0 is a norm on the

finite-dimensional vector space As. For this to be ”intrinsic,” Ns should be

defined canonically. Possibilities include:

• Canonical basis norms: If As has a canonical basis, Ns can be an Lq-

norm of coefficients.

• Norms from bilinear forms: If A (or As) admits a canonical non-

degenerate symmetric bilinear form.

• Representation-Theoretic norms: If As carries an irreducible represen-

tation of a relevant symmetry group (e.g., Autgr(A)), a G-invariant

inner product (unique up to scale) can define Ns.

Example 2.4. For Ak = R[ε]/(εk+1), the maximal ideal is Ak =
⊕k

s=1 As,

with As = span{εs}. An element α ∈ Ak is α =
∑k
s=1 asε

s, so α(s) = asε
s. A

canonical norm for As is Ns(asε
s) = |as|. Using factorial weights λs = 1/(s!)2

and p = 2 (for a quadratic sum):

NAk(α) =

(
k∑
s=1

|as|2

(s!)2

)1/2

.

This choice reflects that in jet bundles, the s-th derivative term (represented by

εs) is often associated with a factor of 1/s! from Taylor expansions.

Remark 2.5 (Automorphism Invariance for NAk). Automorphisms of Ak =

R[ε]/(εk+1) that preserve the graded structure Ak =
⊕

As are of the form

φc(ε) = cε for c ∈ R, c 6= 0. Under such an automorphism,

α =
∑

asε
s 7→ φc(α) =

∑
as(cε)

s =
∑

(asc
s)εs.

Then,

Ns((φc(α))(s)) = Ns(asc
sεs) = |ascs| = |c|s|as|.

Thus, we have

NAk(φc(α)) =

(
k∑
s=1

(|c|s|as|)2

(s!)2

)1/2

=

(
k∑
s=1

|c|2s |as|
2

(s!)2

)1/2

.
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For NAk to be strictly invariant (NAk(φc(α)) = NAk(α)), we would generally

need |c| = 1. If we desire homogeneity like NAk(φc(α)) = |c|NAk(α) (which

means it scales like a first-order quantity), this particular factorial weight-

ing does not satisfy it unless k = 1. This highlights that specific equivari-

ance/invariance properties depend heavily on the choice of λs and Ns.

2.2. From norm on A to norm FA on fiber vector space V A
x
∼= An.

Given an intrinsic norm NA on the ideal A, we define FA on the fiber vec-

tor space V A ∼= An by combining the norms of its n components. For v =

(α(1), . . . , α(n)) ∈ An, where each α(j) ∈ A, we define:

FA(v) = FA((α(1), . . . , α(n))) =

 n∑
j=1

(NA(α(j)))q

1/q

, (2.2)

where q ≥ 1. This FA serves as a norm on V A.

Example 2.6. Using NA2(aε + bε2) =
√
|a|2 + 1

4 |b|2 from Example 2.4 (with

k = 2, λ1 = 1, λ2 = 1/4, p = 2). An element v ∈ V A2 ∼= An2 is v =

(α(1), . . . , α(n)), where α(j) = ajε+ bjε
2. With q = 2 in Eq. (2.2), we obtain:

FA(v) =

√√√√ n∑
j=1

(NA2
(ajε+ bjε2))2 =

√√√√ n∑
j=1

(
|aj |2 +

1

4
|bj |2

)
.

This FA(v) defines a norm on the 2n-dimensional vector space An2 .

2.3. Fiber norms FA using a base metric g (Alternative Construc-

tions). Alternatively, for specific applications where MA is identified with a

standard geometric object like a jet bundle of curves, a base Riemannian metric

g on M can be used to define FA on V A
x .

2.3.1. Component-wise definitions for Jet bundles of curves. Assume

MAk (for Ak = R[ε]/(εk+1)) is identified with Jk0 (R,M)x, the bundle of k-jets

of curves γ : (R, 0) → (M,x), whose geometry is detailed in [4]. The fiber

vector space V Ak
x is then identified with

⊕k
s=1 TxM . An element is a tuple

of tangent vectors (v1, . . . , vk), where vs ∈ TxM represents the (appropriately

scaled) s-th derivative component (e.g., vs = 1
s! (∇γ̇)s−1γ̇|t=0). The metric gx

induces a norm ‖vs‖gx =
√
gx(vs, vs). We then define our norm, a construction

related to other Finsler structures on higher-order tangent bundles [3], as a kind

of twisted Sasaki-type metric:

FAk
(x, (vs)

k
s=1) =

(
k∑
s=1

ωs‖vs‖2gx

)1/2

, (2.3)
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where ωs > 0 are weights. For factorial weighting, commonly ωs = 1/(s!)2, the

above definition becomes:

FAk
(x, (vs)

k
s=1) =

(
k∑
s=1

1

(s!)2
‖vs‖2gx

)1/2

. (2.4)

Example 2.7 (MA2 ∼= J2
0 (R,M)x). For A2 = R[ε]/(ε3), V A2

x
∼= TxM ⊕TxM .

An element is (v, a) (velocity v1 = v, acceleration v2 = a). Using Eq. (2.4) for

FA2
, we obtain:

FA2
(x, (v, a)) =

√
‖v‖2gx
(1!)2

+
‖a‖2gx
(2!)2

=

√
‖v‖2gx +

1

4
‖a‖2gx . (2.5)

Example 2.8 (Example: Coupled pair algebra (Apair)). For

Apair = R[ε1, ε2]/(ε21, ε
2
2, ε1ε2 = 0), and (V A

x )pair ∼= TxM ⊕ TxM , we have:

FApair
(x, (v1, v2)) =

√
gx(v1, v1) + gx(v2, v2) + 2κgx(v1, v2), (2.6)

where |κ| < 1 ensures positive definiteness.

3. Volume forms on M and MA

3.1. Effective Finsler structure FM on TM . To derive an effective Finsler

structure FM : TM → R≥0 on the base manifold M from a fiber norm FA on

V A
x , we project or restrict FA to its first-order component.

Step 1: Identify first-order component. Assume the graded Weil algebra

A = R ⊕ A1 ⊕ · · · ⊕ Ak induces a decomposition of the fiber vector space

V A
x
∼= An1 ⊕ · · · ⊕ Ank . The ”first-order part” corresponds to An1 . If A1 is

identifiable with R (e.g., A1 = span{ε} for Ak), then An1
∼= Rn ∼= TxM . Let

this identification be j1 : TxM → An1 .

Step 2: Restrict FA. For v ∈ TxM , let ṽ ∈ V A
x be the element whose An1

component is j1(v) and all higher-order components (Ans for s ≥ 2) are zero.

The effective Finsler structure FM on TM is defined by:

FM (x, v) = FA(x, ṽ). (3.1)

For example, if FA is from Eq. (2.4) (assuming MAk ∼= Jk0 (R,M)x and vs ∈
TxM): Setting v1 = v and vs = 0 for s ≥ 2:

FM (x, v) =

(
1

(1!)2
‖v‖2gx

)1/2

= ‖v‖gx .

Here, FM is the Riemannian norm from g. If FA was from Eq. (2.2) (intrinsic):

Assuming TxM ∼= An1 via v = (v1, . . . , vn) in coordinates, with A1 = span{ε}.
Then ṽ = (v1ε, . . . , vnε).

FM (x, v) =

 n∑
j=1

(NA(vjε))q

1/q

.



6 Stéphane Tchuiaga

Assuming NA(α(1)) =
√
λ1N1(α(1)) and N1(vjε) = |vj |, then

NA(vjε) =
√
λ1|vj |.

So

FM (x, v) =

 n∑
j=1

(
√
λ1|vj |)q

1/q

= λ
1/2
1

 n∑
j=1

|vj |q
1/q

.

This is an Lq-norm on TxM (up to scale). If q = 2, it is a Euclidean norm.

3.2. Busemann-Hausdorff dVolFM on M . Given the effective Finsler struc-

ture FM : TM → R≥0 on M , the Busemann-Hausdorff measure dVolFM on M

is defined by:

dVolFM (x) :=
VolEucl(B

FM
x )

cn
dVcoord(x), (3.2)

where

BFMx :=
{
y ∈ TxM | FM (x, y) < 1

}
is the unit Finsler ball in TxM , dVcoord(x) := dx1 ∧ · · · ∧ dxn is a coordinate

volume element, and cn := πn/2/Γ(n/2+1) is the volume of the Euclidean unit

n-ball.

If FM (x, y) =
√
gx(y, y) for a Riemannian metric g, then

dVolFM (x) =
√

det(gij(x))dx1 ∧ · · · ∧ dxn = dVg(x).

3.3. Holmes-Thompson Volume µM
A

HT on MA. In order to define a Holmes-

Thompson volume directly on the Weil bundle MA, we first need a Finsler

structure FTMA : TMA → R≥0 on the tangent bundle of MA. Let g be a

Riemannian metric on M , and let FA be a norm on the fiber vector space

V A ∼= An (e.g., from Eq. (2.2) or from Sec. 2.3). Motivated by the work done

in [5], we define FTMA on TMA by combining g and FA. For ζ ∈ MA and

Ξ ∈ TζMA:

FTMA(ζ,Ξ)2 = gπA(ζ)((πA)∗Ξ, (πA)∗Ξ) + FA(ver(Ξ))2, (3.3)

where ver(Ξ) ∈ V A
πA(ζ) is the vertical component of Ξ (requiring a connection

or local bundle coordinates for unique definition). The dual unit co-ball bundle

B∗ ⊂ T ∗MA is defined as:

B∗ =
{
α ∈ T ∗MA : F ∗TMA(α) ≤ 1

}
,

where F ∗TMA is the dual norm of FTMA . Therefore, the Holmes-Thompson

measure µM
A

HT on MA is defined by:

µM
A

HT (U) :=
1

κdMA

∫
B∗∩π−1

T∗MA (U)

(ωMA)∧dMA , (3.4)

for U ⊆MA where

dMA := dimMA = n · dim A
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πT∗MA : T ∗MA → MA is the projection, ωMA := dθMA is the standard

symplectic form on T ∗MA with θMA the tautological 1−form, and

κdMA
:=

πdMA/2

Γ(dMA/2 + 1)

is the volume of the Euclidean unit ball in RdMA . Note that in Eq.(3.4), the

notation (ωMA)∧dMA stands for ωMA ∧ ωMA ∧ · · · ∧ ωMA︸ ︷︷ ︸
dMA−times

.

4. A-Naturality and Symmetries

4.1. Definition of A-Naturality.

Definition 4.1 (A-Naturality). A structure S (e.g., FA or dVolFM ) is A-

natural if:

(1) Functoriality: For any morphism of Weil algebras ρ : A → B, the

structure S is compatible with the induced bundle map ρ\ : MA →MB.

This means S (or an induced structure S′ on MB) is related to (ρ\)
∗S′

in an appropriate sense.

(2) Equivariance: For any automorphism φ ∈ Aut(A), the structure S

is equivariant with respect to the induced bundle automorphism φ# :

MA →MA, meaning S ◦ φ# = f(φ)S for some scalar function f(φ).

(3) Algebraic Consistency: S respects the graded structure of the ideal A =⊕
As, meaning its definition explicitly utilizes this grading (e.g., via

weights like 1/s!).

(4) Localizability: S is locally defined, depending only on the Weil algebra

A and the local differential structure of M .

4.2. Examples of A-Natural Structures.

Example 4.2 (Functoriality Failure for Non-Factorial Weights). Using λs = 1

in NAk for Ak, the map ρ : A2 → A1 gives:

NA2
(aε+ bε2) =

√
a2 + b2, ρ\(aε+ bε2) = aε.

Then NA1(ρ\(aε+ bε2)) = NA1(aε) = |a|. Compatibility would require

NA2(aε + bε2) restricted to b = 0 to match NA1(aε), which is |a| =
√
a2: This

holds. However, general functoriality

NA1
(ρ\(α))

?
= something related to NA2

(α),

is more complex. The original point was that if FM were defined differently,

functoriality might fail. Factorial weights often ensure consistency when oper-

ations like derivatives or compositions are involved.
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4.3. Illustrating A-Naturality Axioms. We illustrate Functoriality and

Equivariance using examples, assuming FA on fibers is typically derived us-

ing a base metric g on M for these illustrations.

Example 4.3 (Functoriality for ρ : A2 → A1). Let A2 = R[ε]/(ε2), A1 =

R, and ρ(ε) = 0. Then ρ\ : MA2 ∼= TM → MA1 ∼= M is (x, v) 7→ x.

Set FA2
(x, v) = ‖v‖gx . The target structure FA1

on MA1 ∼= M would be a

function f : M → R≥0, e.g., f(x) = 0 or f(x) = 1. If FA1
(x) = 0, then

(ρ\)∗FA1(x, v) = FA1(ρ\(x, v)) = FA1(x) = 0. Compatibility means FA2(x, v)

should relate to FA1
(ρ\(x, v)). If we set v = 0, then FA2

(x, 0) = 0, which

matches FA1
(x) = 0. This example shows how the structure collapses when the

fiber is trivialized by the map.

Example 4.4 (Equivariance for A2 ). Let ϕ(ε) = cε (c 6= 0) be an automor-

phism of A2 := R[ε]/(ε2). This induces ϕ# : TM → TM , (x, v) 7→ (x, cv). If

FA2
(x, v) = ‖v‖gx , then

FA2
(ϕ#(x, v)) = FA2

(x, cv) = |c|‖v‖gx .

Preservation: FA2(ϕ#(x, v)) = FA2(x, v) forces |c| = 1.

Example 4.5 (Functoriality for ρ : A3 → A2). Let A3 = R[ε]/(ε3), A2 =

R[ε]/(ε2), and ρ : A3 → A2 be ε 7→ ε (mod ε2). Identify MA3 ∼= J2
0 (R,M)x

(elements (x, v, a)) and MA2 ∼= TM (elements (x, v)): So, ρ\(x, v, a) = (x, v).

Let FA3
(x, v, a) =

√
‖v‖2gx + 1

4‖a‖2gx and FA2
(x, v) = ‖v‖gx .

Then FA3(x, v, 0) = ‖v‖gx . Also, FA2(ρ\(x, v, a)) = FA2(x, v) = ‖v‖gx . The

compatibility condition for functoriality often looks like

FA2
(ρ\(jetk)) = FA3

(jetk restricted to ker ρ or projected appropriately).

Here, FA3
(x, v, 0) = FA2

(ρ\(x, v, 0)) shows compatibility for jets with zero ac-

celeration.

4.4. Naturality of volume forms under prolongations. If φ : M →M is

a diffeomorphism, its prolongation φA : MA → MA is a diffeomorphism. If

FTMA (Eq. (3.3)) is used to define µM
A

HT (Eq. (3.4)), and if φ is an isometry

of g, and if the fiber norm FA used in FTMA is Aut(A)-invariant and satisfies

FA(TφA(ver(Ξ))) = FA(ver(Ξ)) for all Ξ ∈ TMA, then TφA preserves FTMA .

This implies (φA)∗ preserves B∗ and ωMA , making µM
A

HT invariant under such

φA.

Proposition 4.6 (Invariance of µM
A

HT ). Let (M, g) be a Riemannian manifold,

A a Weil algebra, and FA a fiber norm on V A that is Aut(A)-invariant. If

φ : M →M is an isometry of g and its prolongation φA : MA →MA satisfies:

FA((TφA)(ver(Ξ))) = FA(ver(Ξ)) ∀Ξ ∈ TMA,
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then the Holmes-Thompson volume µM
A

HT is invariant under φA, i.e.,

(φA)∗µM
A

HT = µM
A

HT .

Proof. Since φ is an isometry, it preserves the horizontal part:

gπA(ζ)((πA)∗Ξ, (πA)∗Ξ) = gπA(φA(ζ))((πA)∗(Tφ
A(Ξ)), (πA)∗(Tφ

A(Ξ))).

The condition on FA ensures preservation of the vertical part. Thus,

FTMA(ζ,Ξ) = FTMA(φA(ζ), TφA(Ξ)),

for all (ζ,Ξ) ∈ TMA. This implies that the dual norm F ∗TMA is preserved, so

(TφA)∗ maps B∗ to itself. Since φA is a diffeomorphism derived from φ, then

φA preserves θMA (if φA is a symplectomorphism for ωMA , which holds for

canonical lifts) and hence ωMA = dθMA . The result follows from the definition

of µM
A

HT . �

5. Rigidity and Characterization Theorems

Proposition 5.1 (Isometry from FM -Preservation). Let (M, g) be a Riemann-

ian manifold. Let FM : TM → R≥0 be the Finsler structure on M defined by

FM (x, y) = ‖y‖gx =
√
gx(y, y) (i.e., the Riemannian norm). If a diffeomor-

phism φ : M → M preserves FM (i.e., FM (x, y) = FM (φ(x), Tφx(y)) for all

(x, y) ∈ TM), then φ is an isometry of (M, g).

Proof. The condition FM (x, y) = FM (φ(x), Tφx(y)) means√
gx(y, y) =

√
gφ(x)(Tφx(y), Tφx(y)).

Squaring gives gx(y, y) = gφ(x)(Tφx(y), Tφx(y)), which is (φ∗g)x(y, y) = gx(y, y).

By polarization, φ∗g = g. �

Theorem 5.2 (Rigidity for A2-Structures on Jet Bundles of Curves). Let

(M, g) be a Riemannian manifold. Identify MA2 with J2
0 (R,M)x (2-jets of

curves), where A2 = R[ε]/(ε3). Let FA2 be the fiber norm on V A2
x
∼= TxM ⊕

TxM defined by:

(FA2(x, v, a))2 = ‖v‖2gx + ω2‖a‖2gx ,
where (v, a) are velocity and covariant acceleration components, and ω2 > 0

is a constant. If a diffeomorphism φ : M → M is such that its prolonga-

tion φA2 : MA2 → MA2 preserves this fiber norm FA2
(i.e., FA2

(x, v, a) =

FA2
(φA2(j2

0γ(0))) for j2
0γ(0) = (x, v, a)), then φ is an affine isometry of (M, g).

Proof. The prolongation φA2 maps j2
0γ = (x, v, a) to j2

0(φ ◦ γ) = (φ(x), v′, a′),

where:

v′ = Tφx(v), a′ = (Tφ)x(a) + (∇Tφ)(v, v),

with (∇Tφ) the second fundamental form / Hessian of φ. Preservation:

(FA2
(x, v, a))2 = (FA2

(φ(x), v′, a′))2,
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implies

‖v‖2gx + ω2‖a‖2gx = ‖Tφx(v)‖2gφ(x) + ω2‖(Tφ)x(a) + (∇Tφ)(v, v)‖2gφ(x) . (5.1)

Setting a = 0:

‖v‖2gx = ‖Tφx(v)‖2gφ(x) + ω2‖(∇Tφ)(v, v)‖2gφ(x) .

Scale v by λ ∈ R \ {0}:

‖λv‖2gx = ‖Tφx(λv)‖2gφ(x) + ω2‖(∇Tφ)(λv, λv)‖2gφ(x) .

Since (∇Tφ) is bilinear in its arguments, then

(∇Tφ)(λv, λv) = λ2(∇Tφ)(v, v).

Thus

λ2‖v‖2gx = λ2‖Tφx(v)‖2gφ(x) + ω2λ
4‖(∇Tφ)(v, v)‖2gφ(x) .

Dividing by λ2 (for λ 6= 0):

‖v‖2gx = ‖Tφx(v)‖2gφ(x) + ω2λ
2‖(∇Tφ)(v, v)‖2gφ(x) .

This must hold for all λ 6= 0. Taking the limit λ→ 0 (or comparing coefficients

of powers of λ2 if viewed as polynomials) shows

‖v‖2gx = ‖Tφx(v)‖2gφ(x) .

Thus φ is an isometry. Substituting this back, the λ2 term implies

ω2λ
2‖(∇Tφ)(v, v)‖2gφ(x) = 0.

Since ω2 > 0, this forces ‖(∇Tφ)(v, v)‖2gφ(x) = 0 for all v, so (∇Tφ) = 0.

This means φ is an affine map, and since it is also an isometry, it is an affine

isometry. �

Theorem 5.3 (Characterization of Volume by Affine Symmetries with a Fixed

Connection). Let (M,∇) be a smooth manifold with a fixed affine connection ∇.

Let Aff(M,∇) be the group of affine transformations preserving ∇. Let FA be a

fiber norm associated with a Weil algebra A, potentially using ∇ in its construc-

tion. Let Feff : TM → R≥0 be the effective Finsler structure derived from FA,

and let dVolFM be its Busemann–Hausdorff measure on M . Suppose dVolFM
is Aff(M,∇)-invariant (i.e. ψ∗dVolFM = dVolFM for all ψ ∈ Aff(M,∇)). If

µ is any smooth volume form on M that is also Aff(M,∇)-invariant, then

on any connected component of M which is homogeneous under the action of

Aff(M,∇), we have

µ = cdVolFM ,

for some constant c ∈ R. In particular, if M is connected and Aff(M,∇)-

homogeneous, then c is a global constant.
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Proof. Denote G = Aff(M,∇). Both µ and dVolFM are nowhere–vanishing

smooth n-forms on M , and satisfy ψ∗µ = µ, and ψ∗(dVolFM ) = dVolFM ∀ψ ∈
G. Fix a connected, G-homogeneous open subset U ⊂ M . On U , define the

smooth function

h =
µ

dVolFM
, µ = hdVolFM .

Since µ and dVolFM are both positive volume forms, h > 0 on U . For any

ψ ∈ G, pull back the identity µ = hdVolFM to obtain:

ψ∗µ = ψ∗(hdVolFM ) = (ψ∗h) (ψ∗dVolFM ).

By invariance of µ and dVolFM , this gives µ = (ψ∗h) dVolFM . Comparing with

µ = hdVolFM and cancelling the nonzero dVolFM shows

h = ψ∗h, h(ψ(x)) = h(x),

so h is constant on each G-orbit in U . Transitivity of G on U then forces h ≡ cU
for some cU > 0. Consequently,

µ
∣∣
U

= cU dVolFM
∣∣
U
.

If M itself is connected and G-homogeneous, then U = M and the constant

cU is global. Hence µ = cdVolFM on M , completing the proof. �

5.1. Rigidity via Prolongations.

Theorem 5.4 (Affine Rigidity for dVolFM ). Let dVolFM be derived from an

A-natural fiber norm FA. If a diffeomorphism φ : M →M satisfies:

(1) φ preserves dVolFM (i.e., φ∗dVolFM = dVolFM ),

(2) The prolongation φA : MA →MA preserves FA,

then φ is an affine transformation with respect to any connection ∇ for which

the A-natural construction of FA is defined (e.g., if FA uses ∇ for covariant

derivatives of jets).

Proof. Condition (2), that φA preserves FA, implies (by an argument similar

to Theorem 5.2, if FA depends on at least second-order jet components) that

φ must be an affine transformation, i.e., (∇Tφ) = 0. Condition (1) is then a

consequence or an additional constraint. If FA leads to FM (x, v) = ‖v‖gx , then

(1) implies φ is an isometry of g. Combined, φ would be an affine isometry. �

Corollary 5.5 (Uniqueness on Homogeneous Spaces). If M is Aff(M,∇)-

homogeneous and connected, then any Aff(M,∇)-invariant volume form dVolFM
(derived from an A-natural FA that yields an Aff(M,∇)-invariant FM ) is

unique up to a positive scalar multiple.

Proof. Let dV F1 and dV F2 be two such Aff(M,∇)-invariant volume forms.

By Theorem 5.3, on the connected, homogeneous manifold M there exists a

constant c > 0 such that dV F1 = c dV F2.
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Hence any two choices differ by the positive scalar c, proving uniqueness up

to scale. �

Example 5.6 (Higher-Order Jets and Volume Invariants). Consider the Weil

algebra A3 = R[ε]/(ε4), so that its maximal ideal decomposes as

AA3 = span{ε, ε2, ε3}. An element in the fiber of the Weil bundle MA3 can be

identified with a triple (v, a, b), where: v represents the velocity, a the acceler-

ation, and b the jerk (third derivative). A natural extension of the earlier fiber

norm is

FA3(x, v, a, b) =

√
‖v‖2gx +

1

4
‖a‖2gx +

1

36
‖b‖2gx ,

where the weights 1, 1/(2!)2, and 1/(3!)2 ensure that the scaling reflects the

Taylor expansion. One then defines an effective Finsler structure FM on TM

by appropriate projections from higher-order jet spaces. In this higher-order

situation, a diffeomorphism whose prolongation preserves the norm FA3 must

satisfy stronger rigidity properties. In particular, the preservation of higher-

order invariants forces the map to preserve not only the metric but also higher

derivatives of the connection; in turn, this could have applications in the study

of geometric flows and higher-order variational problems.

Example 5.7 (Coupled Pair Weil Algebra with Cross Terms). Now consider

a non-standard Weil algebra defined by two nilpotent generators:

Apair = R[ε1, ε2]
/ (
ε21, ε

2
2, ε1ε2 = 0

)
.

In this case, the fiber is V
Apair
x

∼= TxM ⊕ TxM. A canonical fiber norm may be

defined by

FApair
(x, (v1, v2)) =

√
gx(v1, v1) + gx(v2, v2) + 2κ gx(v1, v2),

with a coupling parameter κ satisfying |κ| < 1 to ensure positive definiteness.

This example is particularly interesting when modeling situations in which two

independent tangential effects are interacting. The invariance properties under

the automorphisms of Apair ensure that the corresponding volume measure is

naturally defined and yield rigidity properties analogous to those found in the

graded case.

Conjecture 5.8 (Higher-Order Rigidity). For Ak = R[ε]/(εk+1) with k ≥ 3

and fiber norm:

FAk
(x, {v(s)}ks=1) =

(
k∑
s=1

1

(s!)2
‖v(s)‖2gx

)1/2

,

if φAk preserves FAk
, then φ is affine and ∇mR = 0 for 1 ≤ m ≤ k − 2.

Remark 5.9. The case k = 2 (Theorem 5.2) provides strong evidence. For

k = 3, preliminary calculations show preservation implies ∇R = 0, but full

proof requires careful analysis of prolongation’s action on third-order jets.
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Conjecture 5.10 (General Weil Algebras). For arbitrary Weil algebra A with

maximal ideal A =
⊕k

s=1 As and FA defined via intrinsic norm NA, if φA

preserves FA, then φ preserves the connection used to identify V A
x
∼= A⊗TxM .

6. Applications and Examples

6.1. Illustrative Examples of Weil Algebra Structures.

6.1.1. Higher-Order Jets and Volume Invariants (Example 2.4 extension). Con-

sider the Weil algebra A3 = R[ε]/(ε4), so that its maximal ideal decom-

poses as AA3 = span{ε, ε2, ε3}. An element in the fiber of the Weil bundle

MA3 ∼= J3
0 (R,M)x can be identified with a triple (v, a, b) of velocity, acceler-

ation, and jerk, relative to a connection ∇. A natural extension of the fiber

norm from Example 2.4, if g is a metric on M , is

FA3(x, v, a, b) =

√
‖v‖2gx +

1

(2!)2
‖a‖2gx +

1

(3!)2
‖b‖2gx .

One then defines an effective Finsler structure FM on TM by

FM (x, v) = FA3
(x, v, 0, 0) = ‖v‖gx .

The resulting dVolFM is dVg. However, the interest lies in rigidity: if φA3 pre-

serves FA3
, then φ must preserve g, ∇g = 0, ∇R = 0, etc., up to a certain

order, implying φ is a higher-order affine map or an isometry with special prop-

erties. This has applications in studying symmetries of higher-order variational

problems [3].

6.1.2. Coupled Pair Weil Algebra with Cross Terms. Consider a non-

standard Weil algebra Apair = R[ε1, ε2]
/ (
ε21, ε

2
2, ε1ε2 = 0

)
. The fiber is V

Apair
x

∼=
TxM ⊕ TxM. A fiber norm (using a metric g) can be defined as in Eq. (2.6):

FApair,g(x, (v1, v2)) =
√
gx(v1, v1) + gx(v2, v2) + 2κ gx(v1, v2), |κ| < 1.

The effective Finsler structure FM might be obtained by setting v2 = 0 (or

projecting):

FM (x, v1) =
√
gx(v1, v1).

The corresponding dVolFM is dVg, and note that rigidity arises if φApair pre-

serves FApair,g. Automorphisms of Apair include swapping ε1, ε2 (if κ = 0) or

scaling εi 7→ ciεi. Invariance under these imposes constraints on φ.

6.2. Possible Applications.
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Invariant Volume in Geometric Measure Theory: It is easy to see that,

the Busemann-Hausdorff measure dVolFM derived from an A-natural FM pro-

vides a canonical volume. While FM often reduces to a known metric (like

Riemannian) if FA is projected simply, the A-naturality conditions impose

constraints on how FM (and thus dVolFM ) must behave under symmetries of

the underlying Weil algebra. If FM is genuinely novel (not just Riemannian),

dVolFM can be used for isoperimetric inequalities or minimal submanifolds in

these new Finsler settings. The sensitivity to higher-order features arises when

considering conditions under which dVolFM is preserved, as these conditions

often involve the prolongation of maps and preservation of the full FA.

Rigidity in Dynamics and Geometric Flows: The rigidity results (e.g.,

Theorem 5.2 or 5.4) are instrumental. If a dynamical system on M (or a

geometric flow) has its evolution described by transformations whose prolon-

gations preserve FA (and thus dVolFM under suitable conditions), then the

system possesses significant symmetries (affine, isometric). This can identify

invariant manifolds, constrain bifurcations, or classify stable solutions.

Characteristic Classes and Jet Cohomology: Weil bundles MA are fun-

damental in constructing generalized characteristic classes (Chern-Weil theory

for Weil algebras). An A-natural volume dVolFM , or more directly the fiber

norm FA, could be used as an integrand or a coefficient in constructing dif-

ferential forms on M or on MA. These forms might yield new characteristic

classes sensitive to the specific algebraic structure of A, potentially distinguish-

ing manifolds beyond standard characteristic classes.

Analyzing Non-Standard Finsler Structures: If the A-natural construc-

tion leads to an FM that is not Riemannian (e.g., if the first-order projection

of an intrinsic FA results in a non-Euclidean norm on TxM), this provides a

systematic way to generate and study novel Finsler geometries. These could

model anisotropic systems in control theory, robotics, or optics. The associated

dVolFM would be the natural volume for such systems.

7. Further Research Directions and Conjectures

The framework developed in this paper opens several avenues for further

investigation. We outline below a series of significant conjectures and research

directions that aim to explore deeper connections between Weil bundle geom-

etry, intrinsic volumes, and geometric rigidity.

7.1. Conjecture: Infinitesimal Affine Rigidity.

Conjecture 7.1 (Infinitesimal Affine Rigidity). Let (M,∇) be an affine man-

ifold with connection ∇, and let A be a Weil algebra of order k = ord(A) ≥ 2.
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Let X be a smooth vector field on M , and let X̃ denote its canonical A-

prolongation to a vector field on MA. Suppose that FA : V A → R≥0 is a

fiber norm on the vertical bundle V A →MA which is smooth on V A \ {0}. If

LX̃FA = 0, and FA is sufficiently generic (e.g., it depends non-degenerately on

all distinct s-order components for 1 ≤ s ≤ k arising from the grading of A),

then X is an affine vector field, i.e., LX∇ = 0.

Motivation and sketch of argument: The condition LX̃FA = 0 implies

X̃ preserves the vertical distribution and the fiber norm. For k ≥ 2, the A-

prolongation X̃ involves derivatives of X. Specifically, the action of X̃ on

higher-order fiber components (e.g., s ≥ 2 in a jet bundle context for A =

R[ε]/(εk+1)) encodes terms like LX∇. If FA depends non-degenerately on these

higher-order components, its invariance under X̃ forces these terms related

to LX∇ to vanish when evaluated on arbitrary lower-order components. By

choosing appropriate fiber elements (e.g., non-zero first-order component, zero

higher-order components) and using the genericity of FA, one expects to deduce

LX∇ = 0. A rigorous proof would involve explicitly computing the action of X̃

on fiber coordinates representing jet components and analyzing the condition

LX̃FA = 0 using the chain rule and properties of FA.

7.2. Conjecture: Axiomatic Uniqueness of A-Natural Volumes.

Conjecture 7.2 (Axiomatic Uniqueness of A-Natural Volume). Let (M,∇)

be an affine manifold where Aff(M,∇) acts transitively. An A-natural volume

form dVolFA
M

(derived from an effective Finsler structure FA
M which is in turn

derived from a fiber norm FA) is the unique volume form (up to a positive

scalar multiple) satisfying:

(1) Invariance under Aff(M,∇).

(2) The underlying FA
M is positively 1-homogeneous in the fiber variable.

(3) Compatibility with Weil algebra morphisms: For a suitable class of

morphisms ρ : A → B, (ρM )∗(dVolFA
M

) = dVolFB
M

, where ρM is the

induced map on M (typically identity) or on TM .

Conditions (2) and (3) are conjectured to force specific choices for construc-

tion parameters within FA, such as factorial-like weights λs ∝ (1/s!)c if A =

R[ε]/(εk+1), thereby eliminating arbitrary choices in defining the ”canonical”

FA.

Motivation and sketch of argument: Condition (1) is expected to estab-

lish uniqueness up to scale on the homogeneous space M via Haar measure

theory. Condition (2) fixes the homogeneity of the underlying Finsler struc-

ture FA
M . The crucial part is Condition (3) (functoriality), which should act

as a strong selection principle for the construction of FA itself. For example,

when considering Ak = R[ε]/(εk+1) and canonical projections ρ : Ak → Aj

(j < k), consistency would require that the j-th order part of the structure
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derived from Ak matches the structure derived directly from Aj . This often

necessitates factorial scalings for weights λs in definitions like Eq. (2.1) to cor-

rectly handle how derivatives (jet components) transform under compositions

or reparameterizations, which are modeled by morphisms of these Weil alge-

bras. A full proof requires making precise the ”suitable class of morphisms”

and the transformation rule for dVolFA
M

under (ρM )∗.

7.3. Conjecture: Curvature-Volume Compatibility.

Conjecture 7.3 (Ricci Compatibility Relation). Let ∇ be a torsion-free con-

nection on M , and A = R[ε]/(εk+1). For the A-natural volume form dVolFM
(whose density is f with respect to a background dVcan), and for any affine

vector field K (LK∇ = 0), if M is compact, then:∫
M

(LK log f)dVolFM =

∫
M

〈Ric(∇), T (K,∇K)〉FMdVolFM + LOT,

where T (K,∇K) is some universal tensor field constructed from K and its

covariant derivatives, 〈·, ·〉FM denotes a pairing possibly related to FM , and

LOT stands for Lower Order Terms that might vanish or simplify under specific

conditions.

Corollary 7.4. It is conjectured that when ∇ is the Levi-Civita connection of

a metric g and Ric = λg (Einstein manifold), if the A-natural construction is

sufficiently canonical, it yields FM (x, v) = C‖v‖g, implying dVolFM = CndVg.

The compatibility relation should then hold, possibly trivially or by imposing

conditions on λ.

Motivation and sketch of argument: Such relations typically arise from

Bochner-type formulas. The term LK log f = divdVolFM
(K)−divdVcan(K). For

compact M ,
∫
M

divdVolFM
(K)dVolFM = 0 (if K is tangent to boundary or

no boundary). The density f depends on FM , which is derived from FA. If

FA uses ∇ (e.g., for jet components), its structure is sensitive to curvature.

Yano’s formula (∇i∇jKl +RlmjiK
m = 0 for affine K) links second derivatives

of K to the Riemann tensor R. Integrating by parts expressions involving K

and f , and using these identities, is expected to lead to terms involving Ric.

The precise form of T and the pairing would depend on the specifics of the

A-natural construction of FM .

7.4. Conjecture: Sub-Riemannian Limit.

Conjecture 7.5 (Carnot-Carathéodory Limit from Weil Bundles). Let Ak =

R[ε]/(εk+1). Let (FM )k be a sequence of effective Finsler structures on M

derived from FAk
in a way that progressively penalizes directions not in a

given distribution D ⊂ TM or its higher-order Lie bracket generated direc-

tions. For example, one might define (FM )k using weights ωs(k) in the defini-

tion of FAk
(as in Eq. (2.3)) that tend to infinity for components ”orthogonal”
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to the filtration generated by D, or by adding explicit penalization terms to

an initial FM . Then, under an appropriate rescaling Λk of the path lengths

dk(x, y) = inf
∫

(FM )k(γ, γ̇)dt, the sequence of metric spaces (M,Λkdk) con-

verges in the Gromov-Hausdorff sense to the Carnot-Carathéodory metric space

(M,dCC) associated with D (and a given metric on D).

If this metric convergence holds, it is conjectured that the associated Ak-

natural volumes dVol(FM )k (suitably rescaled if necessary) converge as measures

to a canonical sub-Riemannian volume on (M,dCC), such as the Popp measure

or the sub-Riemannian Holmes-Thompson volume.

Motivation and sketch of argument: This conjecture is motivated by exist-

ing results in sub-Riemannian geometry where Riemannian metrics with highly

anisotropic penalties are shown to converge to sub-Riemannian metrics (e.g.,

via Γ-convergence). The Weil algebra Ak framework provides a natural way

to define structures sensitive to k-th order properties of curves. By designing

(FM )k to favor curves whose jets are ”horizontal” with respect to D and its

bracket-generating hierarchy up to a level related to k, and by heavily penaliz-

ing deviations, one expects that in the limit k →∞ (with appropriate rescaling

Λk), only paths admissible in the sub-Riemannian sense contribute to the dis-

tance. The proof would involve establishing liminf and limsup inequalities for

the convergence of the associated energy functionals.

7.5. Conjecture: Jet-Bundle Holonomy and Rigidity.

Conjecture 7.6 (Holonomy Representation and Local Symmetry). Let (M,∇)

be a manifold with an affine connection ∇. The holonomy group Holx(∇) has

a canonical representation ρA on the fiber V A
x of the Weil bundle MA. If FA

is a fiber norm on V A
x that is invariant under the group Autgr(A) of graded

automorphisms of A, then the representation ρA preserves FA if and only if ∇
is locally symmetric (∇R = 0).

For A = R[ε]/(εk+1), the rigidity of this condition is expected to increase

with k. For k ≥ 2, holonomy preserving an Autgr(A)-invariant FA is conjec-

tured to imply local symmetry of ∇.

Motivation and sketch of argument: The action of the holonomy algebra

holx(∇) on V A
x is induced by parallel transport of jets. If∇R 6= 0, this action on

higher-order jet components (s ≥ 2) involves terms containing ∇R,∇2R, . . . .

The Lie algebra autgr(A) for Ak = R[ε]/(εk+1) is one-dimensional, correspond-

ing to infinitesimal scalings ε 7→ (1+t)ε, which acts on s-th order jet components

by multiplication by s. For the action of holx(∇) to lie within autgr(Ak), the
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complex tensorial terms involving ∇pR must vanish, as they generally do not

conform to this simple scaling structure. This would force ∇R = 0. Conversely,

if ∇R = 0, the action of holx(∇) on jets simplifies significantly (curvature R

acts ”tensorially” on all components). If FA is constructed to be invariant

under this simplified action when it aligns with Autgr(A), then preservation

follows. The ”if” part requires showing this alignment.

8. Conclusion

This paper has introduced a framework for defining intrinsic volumes on

manifolds by leveraging the algebraic structure of Weil bundles. We have de-

tailed methods for constructing A-natural Finsler-like structures FA on the

fibers of Weil bundles, deriving effective Finsler structures FM on the tangent

bundle TM , and subsequently obtaining Busemann-Hausdorff volume forms

dVolFM on M . Key foundational results include rigidity theorems demonstrat-

ing that diffeomorphisms preserving these structures under certain conditions

must be affine or isometric, and a characterization of dVolFM under affine sym-

metries. The potential of this framework extends significantly further, as in-

dicated by the conjectures presented concerning infinitesimal symmetries, the

axiomatic uniqueness of A-natural volumes, intricate compatibility relations

with Ricci curvature, convergence to sub-Riemannian structures, and strong

rigidity conditions imposed by holonomy group actions. These proposed re-

sults suggest that the A-natural approach offers a powerful lens through which

to explore fine geometric properties and uncover new invariants. Future work

will focus on providing proofs for these conjectures, which will involve detailed

computations in jet bundle theory, applications of natural operator theory, and

techniques from Γ-convergence and sub-Riemannian geometry. Further explo-

ration will also include extending the concept of A-naturality to non-graded

or even infinite-dimensional Weil algebras, with applications in areas such as

Frichet geometry, the calculus of variations on path spaces, and the devel-

opment of novel characteristic classes. The interplay between the algebraic

structure of A and the resulting geometric invariants on M promises a fruitful

area for continued research.
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