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1. Introduction

The Holmes-Thompson volume offers a canonical approach to defining vol-
ume in Finsler geometry, intrinsically tied to a given Finsler structure F' :
TM — R>o on a manifold M [6, 1]. This work seeks to extend and adapt
these ideas to the richer context of Weil bundles M over M, associated with
a Weil algebra A [2]. Our primary goal is to investigate how the algebraic
structure of A can inform the geometry of M itself, particularly through the
definition of volume forms.

2. Preliminaries on Weil Bundles and Fibers

Our primary goal is to define a Finsler-like structure (a norm) Fa : VA —
R on the fiber vector space VA = ™ [2]. We aim for this norm to be ”intrin-
sic,” meaning it should be constructed primarily from the algebraic properties
of A and functorial principles, ideally without direct reference to an auxil-
iary Riemannian metric ¢ on M. The argument x € M in Fa(x,v) is often
suppressed when defining the structure on the fiber V4, as this part of the

construction is intended to be independent of the base point.

Definition 2.1. [2] A Weil algebra A is a finite-dimensional, commutative,
associative, unital R-algebra of the form A = R & A, where A is a mazximal
ideal satisfying A**TT =0 for some k > 1.

Definition 2.2. [2] Let M be a smooth manifold and A a Weil algebra. An
infinitely near point to x € M of kind A is a smooth morphism of R-algebras
¢: C®(M) — A such that the following diagram commutes:

RaA
y’ PrR
() ——==— 3R,
where ev, is the evaluation map, defined by ev,(f) = f(x), and prr is the

projection onto the real part of A.

We can construct the Weil bundle M# | which consists of all infinitely near
points to M of kind A. There exists a natural projection map ma : MA — M,
mapping each infinitely near point to its base point. The triple (M4, ma, M)
equipped with the bundle topology, is known as the bundle of A-points near
to points in M [2, 5].

2.1. Intrinsic norms Ny on the ideal 2.

Definition 2.3. A norm Ny is admissible if:
(1) Auty,(A)-invariant.
(2) Compatible with filtration: Ny() > cqllal®)].
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(3) Polynomial growth: Ny(ta) ~ |¢|Ny(cr) as t — 0.

We first focus on defining a norm Ny : A — R>( on the maximal ideal 2
itself, drawing from its algebraic structure. Assume 2 has a natural grading
(or admits one through a canonical choice, e.g., from a presentation of A):
A= @le A, where 20, are vector subspaces (the s-th order components), and
A+ = {0} but A* # {0}. An element o € A decomposes as a = lezl al®),
where a(®) € 2,. We define the norm Ny on 2 as:

k 1/p
Na(a) = (Z A (Na(a) ) , (21)

where p > 1, Ay > 0 are positive weights, chosen to respect symmetries of A
or by convention (e.g., As = 1/(s!)?), and Ny : A; — R>( is a norm on the
finite-dimensional vector space ;. For this to be ”intrinsic,” N, should be
defined canonically. Possibilities include:
e Canonical basis norms: If %, has a canonical basis, /N5 can be an L,-
norm of coefficients.
e Norms from bilinear forms: If A (or ;) admits a canonical non-
degenerate symmetric bilinear form.
e Representation-Theoretic norms: If 2 carries an irreducible represen-
tation of a relevant symmetry group (e.g., Aut,.(A)), a G-invariant
inner product (unique up to scale) can define Nj.

Example 2.4. For A; = R[e]/(e"*1), the mazimal ideal is ), = @’::1 2As,
with As = span{e®}. An element a € Ay, is a = 25:1 as€e®, so a®) = a.e’. A
canonical norm for s is Ns(ase®) = |as|. Using factorial weights s = 1/(s!)?
and p = 2 (for a quadratic sum):

)
Ny, () = (Z (5)2) :

s=1

This choice reflects that in jet bundles, the s-th derivative term (represented by
€% ) is often associated with a factor of 1/s! from Taylor expansions.

Remark 2.5 (Automorphism Invariance for Ny, ). Automorphisms of Ay =
R[e]/(e**1) that preserve the graded structure 2, = @2, are of the form
oc(€) = ce for c € R e # 0. Under such an automorphism,

a= Zases — do(a) = Z as(ce)® = Z(ascs)es.

NS((QSC(O‘))(S)) = Ns(asc’e®) = |asc®| = |c[*|as].

Thus, we have

Eepal?\ (S a2
Nglk(qbc(a)):(Z(S!);) :<Z|c|zs(;)2> )

Then,
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For Ny, to be strictly invariant (Ny, (¢c(a)) = Ny, («)), we would generally
need |c| = 1. If we desire homogeneity like Ny, (¢c(a)) = |c| Ny, (o) (which
means it scales like a first-order quantity), this particular factorial weight-
ing does not satisfy it unless k = 1. This highlights that specific equivari-
ance/invariance properties depend heavily on the choice of As and Ng.

2.2. From norm on 2 to norm F5 on fiber vector space VA = A",
Given an intrinsic norm Ny on the ideal 2, we define Fa on the fiber vec-
tor space VA 2 A" by combining the norms of its n components. For v =

(@M, ..., al™) e A", where each ) € A, we define:
n 1/q
Fa(w) =Fa((@M,....aM) = | > (Na(a))? , (2.2)
j=1
where ¢ > 1. This Fa serves as a norm on VA,
Example 2.6. Using N, (ae + be?) = y/|a|?> + 1|b2 from Ezample 2./ (with

k=2 =1, = 1/4,p = 2). An element v € VA2 = AN js v =
(@M. ™), where ) = aje + bje?. With ¢ =2 in Eq. (2.2), we obtain:

Fate) = | St tye) = [ 3 (lagl+ 11l

j=1 j=1
This Fa(v) defines a norm on the 2n-dimensional vector space 5.

2.3. Fiber norms Fa using a base metric g (Alternative Construc-
tions). Alternatively, for specific applications where M# is identified with a
standard geometric object like a jet bundle of curves, a base Riemannian metric
g on M can be used to define Fa on VA.

2.3.1. Component-wise definitions for Jet bundles of curves. Assume
MA* (for Ay = R[e]/(e*+1)) is identified with JF (R, M),, the bundle of k-jets
of curves v : (R,0) — (M,x), whose geometry is detailed in [4]. The fiber
vector space VA* is then identified with @5:1 T,M. An element is a tuple
of tangent vectors (vy,...,vg), where vs € T, M represents the (appropriately
scaled) s-th derivative component (e.g., vy = (V4)*"'4|;=¢). The metric g,
induces a norm ||vsl4, = \/gz(vs, vs). We then define our norm, a construction
related to other Finsler structures on higher-order tangent bundles [3], as a kind

of twisted Sasaki-type metric:

5 1/2
Fa (@, (05)51) = (Zwsllvs|§m> ; (2.3)
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where w, > 0 are weights. For factorial weighting, commonly ws = 1/(s!)?, the
above definition becomes:

k 1/2
Fa (@, (vs)i—y) = <Z (Sbgllvsﬁz) . (2.4)

s=1

Example 2.7 (MA2 2 J2(R, M),). For Ay = R[e]/(¢?), VA2 = T, M & T, M.
An element is (v,a) (velocity v1 = v, acceleration vy = a). Using Eq. (2.4) for
Fa,, we obtain:

[l  llellZ,

1
Fa,(, (v, a)) lvlg, + 7 llallg, (2.5)

Example 2.8 (Example: Coupled pair algebra (Apair)). For
A uir = Rler, 2]/ (€2, €2, €162 = 0), and (VA) pair = T M ® T, M, we have:
TA o (2, (V1,02)) = Vg (V1,01) + g2 (v2,v2) + 2695 (01, v2), (2.6)

where |k| < 1 ensures positive definiteness.

3. Volume forms on M and M*

3.1. Effective Finsler structure F; on T M. To derive an effective Finsler
structure F; : TM — R>( on the base manifold M from a fiber norm Fa on
VIA7 we project or restrict Fa to its first-order component.

Step 1: Identify first-order component. Assume the graded Weil algebra
A=RaeA & - & A, induces a decomposition of the fiber vector space
VA =2 AT @ --- @ AP, The "first-order part” corresponds to AL. If Ay is
identifiable with R (e.g., 21 = span{e} for Ay), then A} = R™ = T, M. Let
this identification be ji : T M — AT.

Step 2: Restrict F5. For v € T, M, let © € V2 be the element whose A7}
component is j1(v) and all higher-order components (2% for s > 2) are zero.
The effective Finsler structure F; on T'M is defined by:

Fy(z,v) = Fa(z, ). (3.1)

For example, if Fa is from Eq. (2.4) (assuming M2 = JF(R, M), and vy €
T.M): Setting v; = v and vs = 0 for s > 2:

1 1/2
Futeo) = (iR, ) = ol

Here, F; is the Riemannian norm from g. If Fa was from Eq. (2.2) (intrinsic):
Assuming T, M =2 A7 via v = (v!,...,v") in coordinates, with 2(; = span{e}.
Then 9 = (v'e, ..., v" ).

1/q

Fa(z,v) = [ D (Na(v/e))?

j=1
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Assuming Ny (o)) = A N1 (aV) and Ny (v/e) = |[v7], then

Ny (v7e) = /M |v7].

So
" 1/q 1/q

Fu(o)= | (W lipr] =2 [ 3 )
j=1 j=1

This is an Lg-norm on T, M (up to scale). If ¢ = 2, it is a Euclidean norm.

3.2. Busemann-Hausdorff dVolg,, on M. Given the effective Finsler struc-
ture Fis : TM — R> on M, the Busemann-Hausdorff measure dVolr,, on M
is defined by:

Volgye (BEM
dVolp,, (z) :== Md%oord(‘r)? (3.2)
Cn
where

BFv .= {y € TuM | Far(z,y) < 1}
is the unit Finsler ball in T, M, dVieord () := dax' A -+ A dz™ is a coordinate

volume element, and ¢, := 7"/2/T'(n/2+ 1) is the volume of the Euclidean unit
n-ball.

If Far(x,y) = \/92(y,y) for a Riemannian metric g, then

dVolp,, (z) = \/det(g;j(z))dz' A -+ A da™ = dV,(z).

3.3. Holmes-Thompson Volume u%ﬁ on M*A. In order to define a Holmes-
Thompson volume directly on the Weil bundle M#, we first need a Finsler
structure Fppa : TMA — R>o on the tangent bundle of MA. Let g be a
Riemannian metric on M, and let Fo be a norm on the fiber vector space
VA 29" (e.g., from Eq. (2.2) or from Sec. 2.3). Motivated by the work done
in [5], we define Frya on TM# by combining g and Fa. For ¢ € M# and
= e T MA:

Fraa(6,5)? = gra o) (Ta):E, (74):E) + Fa(ver(2))?, (3-3)

where ver(Z) € Vf; (¢) is the vertical component of = (requiring a connection
or local bundle coordinates for unique definition). The dual unit co-ball bundle
B* C T*M* is defined as:

B ={ae T M™: Fya(e) <1},

where F7, 4 is the dual norm of Fppsa. Therefore, the Holmes-Thompson

measure /J,J\H/I; on M# is defined by:

s, pa— /B (waga) ara, (3.4)

Rdya JB*nr L A (U)

for U C M2 where
dya :=dimM? =n-dim A
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Tpepa @ T*MA — M?A is the projection, wya := dfya is the standard
symplectic form on T*M# with 6,,a the tautological 1—form, and

7TdMA /2

"dya T D(dya/2 + 1)

is the volume of the Euclidean unit ball in R¢mA. Note that in Eq.(3.4), the

notation (wysa ) 9mA stands for wya Awpra A+ Awpa.

d, A —times

4. A-Naturality and Symmetries
4.1. Definition of A-Naturality.

Definition 4.1 (A-Naturality). A structure S (e.g., Fa or dVolg,, ) is A-
natural if:

(1) Functoriality: For any morphism of Weil algebras p : A — B, the
structure S is compatible with the induced bundle map py : MA — MB.
This means S (or an induced structure S' on M® ) is related to (py)*S’
m an appropriate sense.

(2) Equivariance: For any automorphism ¢ € Aut(A), the structure S
is equivariant with respect to the induced bundle automorphism ¢4 :
MA — M2, meaning S o ¢u = f($)S for some scalar function f(¢).

(3) Algebraic Consistency: S respects the graded structure of the ideal 2 =
P AU, meaning its definition explicitly utilizes this grading (e.g., via
weights like 1/s!).

(4) Localizability: S is locally defined, depending only on the Weil algebra
A and the local differential structure of M.

4.2. Examples of A-Natural Structures.

Example 4.2 (Functoriality Failure for Non-Factorial Weights). Using As = 1
in Ny, for Ay, the map p: Ay — Ay gives:

Ny, (ae + be?) = /a2 + b2, py(ae+ be*) = ae.

Then Ny, (py(ae + be?)) = Ny, (ae) = |a|. Compatibility would require
Ny, (ae + be?) restricted to b = 0 to match Ny, (ae), which is |a| = Va2: This
holds. However, general functoriality

Ny, (py(a)) < something related to Ny, (),

is more complex. The original point was that if Fyy were defined differently,
functoriality might fail. Factorial weights often ensure consistency when oper-
ations like derivatives or compositions are involved.
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4.3. IMustrating A-Naturality Axioms. We illustrate Functoriality and
Equivariance using examples, assuming Fa on fibers is typically derived us-
ing a base metric g on M for these illustrations.

Example 4.3 (Functoriality for p : Ay — Aj). Let Ay = Rle]/(€?), A1 =
R, and p(e) = 0. Then p* : MA2 = TM — MA* = M is (z,v) — x.
Set Fa,(x,v) = ||v|ly,. The target structure Fa, on MA1 = M would be a
function f : M — Rsq, e.qg., f(z) =0 or f(z) = 1. If Fa,(x) = 0, then
(p")* Fa, (z,v) = Fa, (p*(x,v)) = Fa,(x) = 0. Compatibility means Fa,(z,v)
should relate to Fa,(p*(x,v)). If we set v = 0, then Fa,(x,0) = 0, which
matches Fa, (x) = 0. This example shows how the structure collapses when the
fiber is trivialized by the map.

Example 4.4 (Equivariance for Ay ). Let ¢(€) = ce (¢ # 0) be an automor-
phism of Ay := R[e|/(€*). This induces gy : TM — TM, (z,v) — (z,cv). If
‘FAz(x?U) = ”UHQW then

Fas (s (w,0)) = Fa, (2, cv) = [e][|v]lg, -
Preservation: Fa,(px(x,v)) = Fa,(x,v) forces |c| = 1.

Example 4.5 (Functoriality for p : A3 — Aj). Let Az = Rle]/(€3), Ay =
Rle]/(€2), and p : Az — Ay be € — € (mod €2). Identify M*A3 = J2(R, M),
(elements (z,v,a)) and MA2 =2 TM (elements (z,v)): So, p*(x,v,a) = (z,v).
Let Fa,(x,v,a) = \/||vl3, + fllall?, and Fa,(z,v) = |vll, -

Then Fa,(w,v,0) = |[v]lg,. Also, Fa,(p*(z,v,a)) = Fa,(x,v) = ||v|ly,. The

compatibility condition for functoriality often looks like
Fa, (p°(jetr)) = Fa, (jety restricted to ker p or projected appropriately).

Here, Fa,(7,v,0) = Fa,(p*(z,v,0)) shows compatibility for jets with zero ac-
celeration.

4.4. Naturality of volume forms under prolongations. If ¢ : M — M is
a diffeomorphism, its prolongation ¢® : MA — M#A is a diffeomorphism. If
Frya (Eq. (3.3)) is used to define u%; (Eq. (3.4)), and if ¢ is an isometry
of g, and if the fiber norm Fa used in Fpjsa is Aut(A)-invariant and satisfies
Fa(To™ (ver(E))) = Fa(ver(Z)) for all = € TMA, then Tp? preserves Frpa.
This implies (¢™)* preserves B* and wj;a, making ,u%; invariant under such

ot

Proposition 4.6 (Invariance of u%;) Let (M, g) be a Riemannian manifold,
A a Weil algebra, and Fa a fiber norm on VA that is Aut(A)-invariant. If
¢ : M — M is an isometry of g and its prolongation ¢* : MA — M satisfies:

Fa((T¢™)(ver(E))) = Fa(ver(Z)) V= e TMA,
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then the Holmes-Thompson volume u%f; is invariant under ¢™, i.e.,

A A
(¢A)*NAH4T = H%T

Proof. Since ¢ is an isometry, it preserves the horizontal part:

Ira (@) (TA)E, (TA)SE) = Gra(on(0) (Ta)« (T (2)), (1a)« (T (2)))-

The condition on Fa ensures preservation of the vertical part. Thus,

Frya(CE) = Frya (¢™(0), To™(2)),
for all (¢,E) € TM*. This implies that the dual norm F,, 4 is preserved, so
(T¢™)* maps B* to itself. Since ¢* is a diffeomorphism derived from ¢, then
™ preserves Oya (if ¢* is a symplectomorphism for wy,a, which holds for
canonical lifts) and hence wy;a = dfyra. The result follows from the definition

of pdir. O
5. Rigidity and Characterization Theorems

Proposition 5.1 (Isometry from Fj;-Preservation). Let (M, g) be a Riemann-
ian manifold. Let Fir : TM — Rxo be the Finsler structure on M defined by

Fy(z,y) = Yllg. = V92(y,y) (i-e., the Riemannian norm). If a diffeomor-
phism ¢ : M — M preserves Fy (i.e., Fy(x,y) = Far(d(2), T (y)) for all
(z,y) € TM), then ¢ is an isometry of (M,g).

Proof. The condition Fy(z,y) = Fa(d(x), To.(y)) means

V30, 9) = /900 (Tay), Tx (1),

Squaring gives go (¥, y) = go(z)(T¢z(y), Tdx(y)), whichis (¢*9)z(y,y) = 92 (y,y)-
By polarization, ¢*g = g. O

Theorem 5.2 (Rigidity for Aj-Structures on Jet Bundles of Curves). Let
(M, g) be a Riemannian manifold. Identify M*2 with J2(R, M), (2-jets of
curves), where Ay = R[e]/(€3). Let Fa, be the fiber norm on VA2 = T,M &
T, M defined by:
(Fa(,0,0))2 = ]2, +walal2,

where (v,a) are velocity and covariant acceleration components, and ws > 0
is a constant. If a diffeomorphism ¢ : M — M is such that its prolonga-
tion ¢z : MA2 — MA2 preserves this fiber norm Fa, (i-e., Fa,(x,v,a) =

Fa,(922(527(0))) for j2v(0) = (x,v,a)), then ¢ is an affine zsometry of (M g).
Proof. The prolongation ¢*2 maps j2v = (z,v,a) to j2(¢ o) = (¢p(x),v',a’),
where:

v = T¢I(U)v a = (T(b)a:(a) + (VT¢) (’va)v

with (VT'¢) the second fundamental form / Hessian of ¢. Preservation:

(Fa (2,0, a))* = (Fa,(é(x),v',d))?,
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implies
[vll3, +wzllally, = 1T¢s(0)3,,, +w2ll(Td)s(a) + (VT) (v, )7, - (5.1)
Setting a = 0:

loll5. = 1T¢e()I[5, ., + w2l (VTH) (v, )]

o () ()"

Scale v by A € R\ {0}:

I, = 176,02, ., +wall(VTé) o, Ao) 2, .
Since (VT'¢) is bilinear in its arguments, then
(VT¢) (v, M) = N\2(VT¢)(v,v).
Thus
Nol2, = M2, w)2, ., + @\ [(VT6) (0, 0) 2, .
Dividing by A\? (for A # 0):
lll3, = 1T¢=(w)ll5, ., +w2AI(VTS) (v, 0)ll5, ., -

This must hold for all A # 0. Taking the limit A — 0 (or comparing coefficients
of powers of A\? if viewed as polynomials) shows

loll2, = T (0)I2,,. .

Thus ¢ is an isometry. Substituting this back, the A? term implies
w2 X?[|(VT9)(v,v)l7, ., = 0.

99 ()
Since wy > 0, this forces ||(VT<[))(U,U)H3¢W = 0 for all v, so (VT¢) = 0.
This means ¢ is an affine map, and since it is also an isometry, it is an affine
isometry. O

Theorem 5.3 (Characterization of Volume by Affine Symmetries with a Fixed
Connection). Let (M, V) be a smooth manifold with a fized affine connection V.
Let Aff(M, V) be the group of affine transformations preserving V. Let Fa be a
fiber norm associated with a Weil algebra A, potentially using V in its construc-
tion. Let Fog : TM — R>q be the effective Finsler structure derived from Fa,
and let dVolp,, be its Busemann—Hausdorff measure on M. Suppose dVolp,,
is Aff(M,V)-invariant (i.e. *dVolp,, = dVolg,, for all ¢ € Aff(M,V)). If
s any smooth volume form on M that is also Aff(M,V)-invariant, then
on any connected component of M which is homogeneous under the action of

Aff(M, V), we have
@ = cdVolg,,,

for some constant ¢ € R. In particular, if M is connected and Aff(M,V)-
homogeneous, then c is a global constant.
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Proof. Denote G = Aff(M,V). Both p and dVolg,, are nowhere—vanishing
smooth n-forms on M, and satisfy ¥*u = p, and ¥*(dVolg,,) = dVolg,, V¢ €
G. Fix a connected, G-homogeneous open subset U C M. On U, define the
smooth function

h = dv(iFM7 1= hdVolp,,.
Since p and dVolg,, are both positive volume forms, ~ > 0 on U. For any

¥ € G, pull back the identity p = hdVolp,, to obtain:

Y =Y (hdVolg,,) = (¥*h) (¢*dVolg,,).

By invariance of p and dVolp,,, this gives u = (¢*h) dVolp,,. Comparing with
1 = hdVolg,, and cancelling the nonzero dVolg,, shows

h=9"h,  h(¥(z)) = h(z),

so h is constant on each G-orbit in U. Transitivity of G on U then forces h = ¢y
for some ¢y > 0. Consequently,

1], = cu dVolg,, |-

If M itself is connected and G-homogeneous, then U = M and the constant
cy is global. Hence p = cdVolpg,, on M, completing the proof. ]

5.1. Rigidity via Prolongations.

Theorem 5.4 (Affine Rigidity for dVolp,,). Let dVolg,, be derived from an
A-natural fiber norm Fa. If a diffeomorphism ¢ : M — M satisfies:

(1) ¢ preserves dVolp,, (i.e., ¢*dVolg,, = dVolg,, ),

(2) The prolongation ¢™ : M — M*™ preserves Fa,
then ¢ is an affine transformation with respect to any connection V for which
the A-natural construction of Fa is defined (e.g., if Fa uses V for covariant
derivatives of jets).

Proof. Condition (2), that ¢ preserves Fa, implies (by an argument similar
to Theorem 5.2, if F5 depends on at least second-order jet components) that
¢ must be an affine transformation, i.e., (VI'¢) = 0. Condition (1) is then a
consequence or an additional constraint. If Fa leads to Fis(z,v) = ||v]|g, , then
(1) implies ¢ is an isometry of g. Combined, ¢ would be an affine isometry. O

Corollary 5.5 (Uniqueness on Homogeneous Spaces). If M is Aff(M,V)-
homogeneous and connected, then any Aff (M, V)-invariant volume form dVolg,,
(derived from an A-natural Fa that yields an Aff(M,V)-invariant Fyr) is
unique up to a positive scalar multiple.

Proof. Let dVF; and dV F5 be two such Aff(M, V)-invariant volume forms.
By Theorem 5.3, on the connected, homogeneous manifold M there exists a
constant ¢ > 0 such that dVF, = cdV Fs.
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Hence any two choices differ by the positive scalar ¢, proving uniqueness up
to scale. O

Example 5.6 (Higher-Order Jets and Volume Invariants). Consider the Weil
algebra As = R[e]/(e*), so that its mazimal ideal decomposes as

Aa, = spanie, €2, 3}. An element in the fiber of the Weil bundle M*A3 can be
identified with a triple (v,a,b), where: v represents the velocity, a the acceler-
ation, and b the jerk (third derivative). A natural extension of the earlier fiber
norm s

1 1
Fas(x,0,0,b) = \/Hvi + 3 llallg, + 55 lIblIE,

where the weights 1, 1/(2!)2, and 1/(3!)? ensure that the scaling reflects the
Taylor expansion. One then defines an effective Finsler structure Fpy on TM
by appropriate projections from higher-order jet spaces. In this higher-order
situation, a diffeomorphism whose prolongation preserves the norm Fa, must
satisfy stronger rigidity properties. In particular, the preservation of higher-
order invariants forces the map to preserve not only the metric but also higher
derivatives of the connection; in turn, this could have applications in the study
of geometric flows and higher-order variational problems.

Example 5.7 (Coupled Pair Weil Algebra with Cross Terms). Now consider
a non-standard Weil algebra defined by two nilpotent generators:

Appir = R[€1,€2]/ (ef, €2, €169 = O) .

In this case, the fiber is VxA”“” 2T, M&T,M. A canonical fiber norm may be
defined by

]:pr(xa (Ulv")?)) = \/gw(vlvvl) + gﬂE(UQa UQ) + 2”99:(”17”2)7

with a coupling parameter k satisfying |k| < 1 to ensure positive definiteness.
This example is particularly interesting when modeling situations in which two

independent tangential effects are interacting. The invariance properties under
the automorphisms of Apqr ensure that the corresponding volume measure is
naturally defined and yield rigidity properties analogous to those found in the
graded case.

Conjecture 5.8 (Higher-Order Rigidity). For Ay = Rle]/(e*T1) with k > 3
and fiber norm:

k

1/2
S 1 S
Fay, (2, v ) = (Z @Hv( )|2m> ;

s=1

if ™% preserves Fa, , then ¢ is affine and V"R =0 for 1 <m < k — 2.

Remark 5.9. The case k = 2 (Theorem 5.2) provides strong evidence. For
k = 3, preliminary calculations show preservation implies VR = 0, but full
proof requires careful analysis of prolongation’s action on third-order jets.
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Conjecture 5.10 (General Weil Algebras). For arbitrary Weil algebra A with
mazimal ideal A = EB];:l A, and Fa defined via intrinsic norm Ny, if ¢™
preserves Fa, then ¢ preserves the connection used to identify VA =A@ T, M.

6. Applications and Examples
6.1. Illustrative Examples of Weil Algebra Structures.

6.1.1. Higher-Order Jets and Volume Invariants (Example 2./ extension). Con-
sider the Weil algebra A3z = R[e]/(e?), so that its maximal ideal decom-
poses as Aa, = span{e, €2, €3}. An element in the fiber of the Weil bundle
MAs = J3(R, M), can be identified with a triple (v, a,b) of velocity, acceler-
ation, and jerk, relative to a connection V. A natural extension of the fiber
norm from Example 2.4, if g is a metric on M, is

29 (

One then defines an effective Finsler structure Fp; on T'M by

1 1
Fas(w,v,0,0) = \/Ilvi + @z Il + gz bl

FJVI(%U) = .7'-A3(1',U,0,0) = ||’U||g7‘

The resulting dVolg,, is dV,;. However, the interest lies in rigidity: if &A™ pre-
serves JFa,, then ¢ must preserve g, Vg = 0, VR = 0, etc., up to a certain
order, implying ¢ is a higher-order affine map or an isometry with special prop-
erties. This has applications in studying symmetries of higher-order variational
problems [3].

6.1.2. Coupled Pair Weil Algebra with Cross Terms. Consider a non-
standard Weil algebra Apair = Rler, 62]/ (e%, €2, €160 = O). The fiber is V:,;A‘pair =
T.M & T, M. A fiber norm (using a metric g) can be defined as in Eq. (2.6):

FApain,g (T, (V1,02)) = V92 (v1,01) + go(v2,v2) + 26 g (v1,v2), |k < 1.

The effective Finsler structure Fj; might be obtained by setting vo = 0 (or
projecting):

Fy(x,v1) = v/ ge(v1,v1).

The corresponding dVolr,, is dV,, and note that rigidity arises if ¢Arair pre-
serves Ja_....g-
scaling ¢; — c;¢;. Invariance under these imposes constraints on ¢.

Automorphisms of Ap,iy include swapping €1, €2 (if £ = 0) or

6.2. Possible Applications.
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Invariant Volume in Geometric Measure Theory: It is easy to see that,
the Busemann-Hausdorff measure dVolr,, derived from an A-natural F; pro-
vides a canonical volume. While Fj; often reduces to a known metric (like
Riemannian) if Fa is projected simply, the A-naturality conditions impose
constraints on how Fj; (and thus dVolp,,) must behave under symmetries of
the underlying Weil algebra. If F; is genuinely novel (not just Riemannian),
dVolf,, can be used for isoperimetric inequalities or minimal submanifolds in
these new Finsler settings. The sensitivity to higher-order features arises when
considering conditions under which dVolr,, is preserved, as these conditions
often involve the prolongation of maps and preservation of the full Fa.

Rigidity in Dynamics and Geometric Flows: The rigidity results (e.g.,
Theorem 5.2 or 5.4) are instrumental. If a dynamical system on M (or a
geometric flow) has its evolution described by transformations whose prolon-
gations preserve Fa (and thus dVolp,, under suitable conditions), then the
system possesses significant symmetries (affine, isometric). This can identify
invariant manifolds, constrain bifurcations, or classify stable solutions.

Characteristic Classes and Jet Cohomology: Weil bundles M# are fun-
damental in constructing generalized characteristic classes (Chern-Weil theory
for Weil algebras). An A-natural volume dVolp,,, or more directly the fiber
norm Fa, could be used as an integrand or a coefficient in constructing dif-
ferential forms on M or on M*. These forms might yield new characteristic
classes sensitive to the specific algebraic structure of A, potentially distinguish-
ing manifolds beyond standard characteristic classes.

Analyzing Non-Standard Finsler Structures: If the A-natural construc-
tion leads to an Fj; that is not Riemannian (e.g., if the first-order projection
of an intrinsic Fa results in a non-Euclidean norm on T, M), this provides a
systematic way to generate and study novel Finsler geometries. These could
model anisotropic systems in control theory, robotics, or optics. The associated
dVolp,, would be the natural volume for such systems.

7. Further Research Directions and Conjectures

The framework developed in this paper opens several avenues for further
investigation. We outline below a series of significant conjectures and research
directions that aim to explore deeper connections between Weil bundle geom-
etry, intrinsic volumes, and geometric rigidity.

7.1. Conjecture: Infinitesimal Affine Rigidity.

Conjecture 7.1 (Infinitesimal Affine Rigidity). Let (M, V) be an affine man-
ifold with connection V, and let A be a Weil algebra of order k = ord(A) > 2.
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Let X be a smooth vector field on M, and let X denote its canonical A-
prolongation to a vector field on M*. Suppose that Fa : VA — R>g is a
fiber norm on the vertical bundle VA — M*A which is smooth on VA \ {0}. If
L Fa =0, and Fa is sufficiently generic (e.g., it depends non-degenerately on
all distinct s-order components for 1 < s < k arising from the grading of 2),
then X is an affine vector field, i.e., LxV = 0.

Motivation and sketch of argument: The condition £¢Fa = 0 implies
X preserves the vertical distribution and the fiber norm. For k > 2, the A-
prolongation X involves derivatives of X. Specifically, the action of X on
higher-order fiber components (e.g., s > 2 in a jet bundle context for A =
Rle]/(¢*+1)) encodes terms like Lx V. If Fa depends non-degenerately on these
higher-order components, its invariance under X forces these terms related
to LxV to vanish when evaluated on arbitrary lower-order components. By
choosing appropriate fiber elements (e.g., non-zero first-order component, zero
higher-order components) and using the genericity of Fa , one expects to deduce
LxV = 0. A rigorous proof would involve explicitly computing the action of X
on fiber coordinates representing jet components and analyzing the condition
L ¢ Fa = 0 using the chain rule and properties of Fa.

7.2. Conjecture: Axiomatic Uniqueness of A-Natural Volumes.

Conjecture 7.2 (Axiomatic Uniqueness of A-Natural Volume). Let (M,V)
be an affine manifold where Aff(M, V) acts transitively. An A-natural volume
form dVol FA (derived from an effective Finsler structure Fiy which is in turn
derived from a fiber norm Fa) is the unique volume form (up to a positive
scalar multiple) satisfying:

(1) Invariance under Aff(M, V).
(2) The underlying FJ‘C} 1s positively 1-homogeneous in the fiber variable.
(3) Compatibility with Weil algebra morphisms: For a suitable class of
morphisms p : A — B, (par).(dVolpa) = dVolpe, where par is the
induced map on M (typically identity) or on TM.
Conditions (2) and (3) are conjectured to force specific choices for construc-
tion parameters within Fa, such as factorial-like weights As < (1/s1)¢ if A =
R[e]/(e*+1), thereby eliminating arbitrary choices in defining the ”canonical”
Fa.

Motivation and sketch of argument: Condition (1) is expected to estab-
lish uniqueness up to scale on the homogeneous space M via Haar measure
theory. Condition (2) fixes the homogeneity of the underlying Finsler struc-
ture F{y. The crucial part is Condition (3) (functoriality), which should act
as a strong selection principle for the construction of Fa itself. For example,
when considering A, = R[e]/(e**1) and canonical projections p : Ay — A,
(j < k), consistency would require that the j-th order part of the structure
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derived from Aj matches the structure derived directly from A ;. This often
necessitates factorial scalings for weights A in definitions like Eq. (2.1) to cor-
rectly handle how derivatives (jet components) transform under compositions
or reparameterizations, which are modeled by morphisms of these Weil alge-
bras. A full proof requires making precise the ”suitable class of morphisms”
and the transformation rule for dVolpa under (par)..

7.3. Conjecture: Curvature-Volume Compatibility.

Conjecture 7.3 (Ricci Compatibility Relation). Let V be a torsion-free con-
nection on M, and A = Rle]/(e**1). For the A-natural volume form dVolg,,
(whose density is f with respect to a background dVi.,), and for any affine
vector field K (LxkV =0), if M is compact, then:

/ (L log f)dVolg,, :/ (Ric(V), T(K,VK))p,,dVolg,, + LOT,
M M

where T(K,VK) is some universal tensor field constructed from K and its
covariant deriwatives, (-,-)p,, denotes a pairing possibly related to Fyr, and
LOT stands for Lower Order Terms that might vanish or simplify under specific
conditions.

Corollary 7.4. It is conjectured that when V is the Levi-Civita connection of
a metric g and Ric = \g (Einstein manifold), if the A-natural construction is
sufficiently canonical, it yields Far(z,v) = C|vl|l4, implying dVolg,, = C™dVj,.
The compatibility relation should then hold, possibly trivially or by imposing
conditions on A.

Motivation and sketch of argument: Such relations typically arise from
Bochner-type formulas. The term Lx log f = divavol,, (K) —divay,,, (K). For
compact M, [, divavel,, (K)dVolg, = 0 (if K is tangent to boundary or
no boundary). The density f depends on F), which is derived from Fa. If
Fa uses V (e.g., for jet components), its structure is sensitive to curvature.
Yano’s formula (V;V;K' + RL ;K™ = 0 for affine K) links second derivatives
of K to the Riemann tensor R. Integrating by parts expressions involving K
and f, and using these identities, is expected to lead to terms involving Ric.
The precise form of 7 and the pairing would depend on the specifics of the

A-natural construction of Fy,.
7.4. Conjecture: Sub-Riemannian Limit.

Conjecture 7.5 (Carnot-Carathéodory Limit from Weil Bundles). Let Ay =
Rle]/(e**1).  Let (Far)r be a sequence of effective Finsler structures on M
derived from Fa, in a way that progressively penalizes directions not in a
gwen distribution D C TM or its higher-order Lie bracket generated direc-
tions. For example, one might define (Far)x using weights ws(k) in the defini-
tion of Fa, (as in Eq. (2.3)) that tend to infinity for components ”orthogonal”
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to the filtration generated by D, or by adding explicit penalization terms to
an nitial Fyr. Then, under an appropriate rescaling A, of the path lengths
di(z,y) = inf [(Fa)k(y,¥)dt, the sequence of metric spaces (M, Ady) con-
verges in the Gromov-Hausdorff sense to the Carnot-Carathéodory metric space
(M,dcc) associated with D (and a given metric on D).

If this metric convergence holds, it is conjectured that the associated Ajg-
natural volumes dVol (g, ), (suitably rescaled if necessary) converge as measures
to a canonical sub-Riemannian volume on (M, dc¢), such as the Popp measure
or the sub-Riemannian Holmes-Thompson volume.

Motivation and sketch of argument: This conjecture is motivated by exist-
ing results in sub-Riemannian geometry where Riemannian metrics with highly
anisotropic penalties are shown to converge to sub-Riemannian metrics (e.g.,
via I'-convergence). The Weil algebra A framework provides a natural way
to define structures sensitive to k-th order properties of curves. By designing
(Fa)k to favor curves whose jets are "horizontal” with respect to D and its
bracket-generating hierarchy up to a level related to k, and by heavily penaliz-
ing deviations, one expects that in the limit k¥ — oo (with appropriate rescaling
Ay), only paths admissible in the sub-Riemannian sense contribute to the dis-
tance. The proof would involve establishing liminf and limsup inequalities for
the convergence of the associated energy functionals.

7.5. Conjecture: Jet-Bundle Holonomy and Rigidity.

Conjecture 7.6 (Holonomy Representation and Local Symmetry). Let (M, V)
be a manifold with an affine connection V. The holonomy group Hol,(V) has
a canonical representation p® on the fiber VA of the Weil bundle M*. If Fa
is a fiber norm on VA that is invariant under the group Autg(A) of graded
automorphisms of A, then the representation p™ preserves Fa if and only if V
is locally symmetric (VR =0).

For A = R[e]/(e*T1), the rigidity of this condition is expected to increase
with k. For k > 2, holonomy preserving an Autg,(A)-invariant Fa is conjec-
tured to imply local symmetry of V.

Motivation and sketch of argument: The action of the holonomy algebra
hol, (V) on VA is induced by parallel transport of jets. If VR # 0, this action on
higher-order jet components (s > 2) involves terms containing VR, V2R, . ...
The Lie algebra aut,,.(A) for Ay = R[e]/(e**1) is one-dimensional, correspond-
ing to infinitesimal scalings € — (14-t)e, which acts on s-th order jet components
by multiplication by s. For the action of hol,(V) to lie within aut,,(Ag), the
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complex tensorial terms involving VPR must vanish, as they generally do not
conform to this simple scaling structure. This would force VR = 0. Conversely,
if VR = 0, the action of hol (V) on jets simplifies significantly (curvature R
acts "tensorially” on all components). If Fa is constructed to be invariant
under this simplified action when it aligns with Autg (A), then preservation
follows. The ”if” part requires showing this alignment.

8. Conclusion

This paper has introduced a framework for defining intrinsic volumes on
manifolds by leveraging the algebraic structure of Weil bundles. We have de-
tailed methods for constructing A-natural Finsler-like structures Fa on the
fibers of Weil bundles, deriving effective Finsler structures F); on the tangent
bundle TM, and subsequently obtaining Busemann-Hausdorff volume forms
dVolg,, on M. Key foundational results include rigidity theorems demonstrat-
ing that diffeomorphisms preserving these structures under certain conditions
must be affine or isometric, and a characterization of dVolr,, under affine sym-
metries. The potential of this framework extends significantly further, as in-
dicated by the conjectures presented concerning infinitesimal symmetries, the
axiomatic uniqueness of A-natural volumes, intricate compatibility relations
with Ricci curvature, convergence to sub-Riemannian structures, and strong
rigidity conditions imposed by holonomy group actions. These proposed re-
sults suggest that the A-natural approach offers a powerful lens through which
to explore fine geometric properties and uncover new invariants. Future work
will focus on providing proofs for these conjectures, which will involve detailed
computations in jet bundle theory, applications of natural operator theory, and
techniques from I'-convergence and sub-Riemannian geometry. Further explo-
ration will also include extending the concept of A-naturality to non-graded
or even infinite-dimensional Weil algebras, with applications in areas such as
Frichet geometry, the calculus of variations on path spaces, and the devel-
opment of novel characteristic classes. The interplay between the algebraic
structure of A and the resulting geometric invariants on M promises a fruitful
area for continued research.
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