| تعداد نشریات | 31 |
| تعداد شمارهها | 447 |
| تعداد مقالات | 3,935 |
| تعداد مشاهده مقاله | 6,619,149 |
| تعداد دریافت فایل اصل مقاله | 4,409,727 |
Remarks on four-dimensional locally symmetric Walker manifolds | ||
| Journal of Finsler Geometry and its Applications | ||
| مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 18 آذر 1404 اصل مقاله (267.75 K) | ||
| نوع مقاله: Original Article | ||
| شناسه دیجیتال (DOI): 10.22098/jfga.2025.18434.1186 | ||
| نویسندگان | ||
| Sohrab Azimpour* 1؛ Shiva Salahvarzi2 | ||
| 1Department of Mathematics Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran | ||
| 2Department of Mathematics Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran | ||
| چکیده | ||
| In this paper, we examine certain geometric properties of the curvature tensor for a special case of the Walker metric, assuming g33 = g44 = k̸ = 0, where k is a constant, on a 4-dimensional manifold. Finally, we investigate the necessary and sufficient conditions for the 4-dimensional manifold with this special case of the Walker metric to be locally symmetric. | ||
| کلیدواژهها | ||
| Curvature tensor؛ Einstein؛ Locally symmetric؛ Walker metric | ||
| مراجع | ||
|
1. T. Adama, N. Ameth, and N. Athoumane, Curves of constant breadth in a Walker 4-manifold, Palestine Journal of Mathematics, Vol. 12(4) (2023), 167-173. 2. S. Azimpour, A note on some properties of 4-dimensional Walker metrics, Afrika Matematika. (2021), 1-15. DOI: https://doi.org/10.1007/s 13370-021-00897-3. 3. S. Azimpour, S. Chaichi and M, Toomanian, A note on 4-dimensional locally conformally: flat Walker manifolds, IZV. NAN Armenii. Matematika. 42(5), (2007), 219-226. 4. W. Batat, G. Calvoruse, B. De Leo, On the geometry of four-dimensional Walker manifolds, Rondicontidi Matematika Serie, VII Roma 29, (2008), 163-173. 5. G. Calvoruse, and B, De Leo, Curvature properties of four-dimensional generalized symmetric spaces, J. Geom., 90, (2008), 30-46. 6. M. Chaich, E. Garc´ıa-R´ıo, and Y. Matsushita, Curvature properties of four-dimensional Walker metrics, Class. Quant. Grar., 22, (2005), 559-577. 7. M. Ciss, I. A. Kaboye and A. S. Diallo, On a family of Einstein like Walker metrics, J. Finsler Geom. Appl. 6(2) (2025), 1-11. 8. A. S. Diallo, and F. Massamba, Some properties of four-dimensional Walker manifolds, New Trends in Mathematical Sciences; Istanbul Vol. 5, Iss. 3, (2017), 253-261.DOI:10.20852/ntmsci.2017.200. 9. A. Gray, Einstein-like manifolds which are not Einstein, Geom. Dedicate, (1978), 259-280. 10. B. Rezaei, S. Masoumi and L. Ghasemnezhad, On Quasi-Einstein Kropina Metrics, J. Finsler Geom. Appl. 6(2) (2025), 92-101. 11. A. G. Walker, Cononical form for a Ricmannian Spase with a parallel fild of Null planes, Oxford, Math. (1950), 69-79. | ||
|
آمار تعداد مشاهده مقاله: 29 تعداد دریافت فایل اصل مقاله: 24 |
||