| تعداد نشریات | 31 |
| تعداد شمارهها | 447 |
| تعداد مقالات | 3,935 |
| تعداد مشاهده مقاله | 6,619,149 |
| تعداد دریافت فایل اصل مقاله | 4,409,727 |
Fixed point of multi-valued Zamfirescu operator and convergence results in modular metric spaces endowed with graph | ||
| Journal of Hyperstructures | ||
| مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 09 آذر 1404 اصل مقاله (1.46 M) | ||
| نوع مقاله: Research Paper | ||
| شناسه دیجیتال (DOI): 10.22098/jhs.2025.17087.1083 | ||
| نویسندگان | ||
| Kiran Dewangan* 1؛ JAY KUMAR DEWANGAN* 2 | ||
| 11Department of Mathematics, Government Dudhadhari Bajrang Girls Postgraduate Autonomous College, Raipur, India. | ||
| 22Department of Management, Anjaneya University, Raipur, India. | ||
| چکیده | ||
| This paper contains some convergence results and fixed point of multivalued Zamfirescu operator along with numerical example in the framework of a complete modular metric space endowed with graph. An application of fixed point theory in solution of system of equations for multivalued Zamfirescu operator is described here. | ||
| کلیدواژهها | ||
| Multi-valued Zamfirescue operator؛ Fejer monotone؛ Complete modular metric space | ||
| مراجع | ||
|
[1] A. A. Abdou and M.A. Khamsi, Fixed points of multi-valued contraction mappings in modular metric spaces, Fixed Point Theory and Applications, 2014 (2014), 1-10. [2] S. Alawa, A. Pariya, N. Asthana and P. Pathak, Common fixed point of Kannan and weak contractive type mappings on a modular metric space endowed with a graph, Journal of Mathematics and Computer Science, 11(6) (2021), 7793-7804. [3] J. Ali. and F. Ali, A new iterative scheme to approximate fixed points and the solution of a delay differential equation, Journal of Nonlinear Convex Analysis, 21(9) (2020), 2151-2163. [4] G. V. R. Babu and K. N. V. V. Prasad, Mann iteration converges faster than Ishikawa iteration for the class of Zamfirescu operators, Fixed Point Theory and Applications, 2006 (2006), 1–6. [5] S. Banach, Sur les operations dans ensembles abstraits et leur application aux equations integrales, Fundamenta Mathematicae, 3 (1922), 133-181. [6] V. Berinde, A convergence theorem for Mann iteration in the class of Zamfirescu operators, Analele Universitat¸ii de Vest, Timi¸soara Seria Matematica–Informatica XLV, 1 (2007), 33–41. [7] S. K. Chatterjea, Fixed point theorems, Comptes Rendus de l’Academie Bulgare des Sciences, 25 (1972), 727–730. [8] V. V. Chistyako, Modular metric spaces, I:basic concepts, Nonlinear Analysis: Theory, Methods and Applications, 72(1) (2010), 1-14. [9] F. A. Echenique, Short and constructive proof of Tarski’s fixed point theorem, International Journal of Game Theory, 33(2) (2005), 215-218. [10] R. Espinola and W.A. Kirk, Fixed point theorems in R− trees with applications to graph theory, Topology and its Applications, 153 (2006), 1046-1055. [11] S. George and P. Shaini, Convergence Theorems for the Class of Zamfirescu Operator, International Mathematical Forum, 7(36) (2012), 1785 - 1792. [12] A. Kaewkhao and K. Neammanee, Fixed point theorems of multi-valued Zamfirescu mapping, Journal of Mathematics Research, 2(2) (2010), 1-7. [13] R. Kannan, Some results on fixed points, Bulletin of the Calcutta Mathematical Society, 60 (1968), 71–76. [14] J. K. Kim, S. Dashputre and W.H. Lim, Approximation of fixed points for multi-valued nonexpansive mappings in Banach space, Global Journal of Pure and Applied Mathematics, 12(6) (2016), 4901-4912. [15] W. M. Kowzslowski, Modular function spaces, Monographs and text books in pure and applied mathematics, 122, Marcel Dekker, Inc., New York, 1988. [16] P. Kumam, Fixed point theorems for nonexpansive mapping in modular spaces, Archivum Mathematicum, 40 (2004), 345-353. [17] J. T. Markin, Continuous dependence of fixed point sets, Proceedings of American Mathematical Society, 38 (1973), 545-547. [18] S. B. Nadler, Multi-valued contraction mappings, Pacific Journal of Mathematics, 30(2) (1969), 475–488. [19] H. Nakano, Modulered semi-ordered linear spaces, Maruzen Cooperation Limited, Tokyo, 1950. [20] Y. Qing and B. E. Rhodes, Comments on the Rate of Convergence between Mann and Ishikawa Iterations Applied to Zamfirescu Operators, Fixed Point Theory and Applications, 2008 (2008), 1-3. [21] J. Tiammee, A. Kaewkhao and S. Suantai, On Browder’s convergence theorem and Halpern iteration process for G− nonexpansive mappings in Hilbert spaces endowed with graphs, Fixed Point Theory and Applications, 187 (2015), 1-12. [22] T. Zamfirescu, Fixed point theorems in metric spaces, Archiv der Mathematik, 23 (1972), 292–298. | ||
|
آمار تعداد مشاهده مقاله: 16 تعداد دریافت فایل اصل مقاله: 21 |
||