- M. H. Mousavi, H. M. CheshmehBeigi, and M. Ahmadi, “A ddsrf-based vsg control scheme in islanded microgrid under unbalanced load conditions,” Electr. Eng., vol. 105, no. 6, pp. 4321–4337, 2023.
- J. V. P.R., N. S. K., V. T., J. G. A., and V. Arunachalam, “Development of a long-term solar PV power forecasting model for power system planning,” World J. Eng., 2024.
- R. Ahmed, V. Sreeram, Y. Mishra, and M. D. Arif, “A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization,” Renew. Sustain. Energy Rev., vol. 124, p. 109792, 2020.
- R. A. Rajagukguk, R. A. A. Ramadhan, and H. J. Lee, “A review on deep learning models for forecasting time series data of solar irradiance and photovoltaic power,” Energies, vol. 13, no. 24, 2020.
- H. Sharadga, S. Hajimirza, and R. S. Balog, “Time series forecasting of solar power generation for large-scale photovoltaic plants,” Renew. Energy, 2020.
- S. Frizzo Stefenon, C. Kasburg, A. Nied, A. C. Rodrigues Klaar, F. C. Silva Ferreira, and N. Waldrigues Branco, “Hybrid deep learning for power generation forecasting in active solar trackers,” IET Gener. Transm. Distrib., vol. 14, no. 23, pp. 5667–5674, 2020.
- M. N. Akhter, S. Mekhilef, H. Mokhlis, Z. M. Almohaimeed, M. A. Muhammad, A. S. M. Khairuddin, R. Akram, and M. M. Hussain, “An hour-ahead PV power forecasting method based on an RNN-LSTM model for three different PV plants,” Energies, vol. 15, no. 6, p. 2243, 2022.
- S. M. J. Jalali, S. Ahmadian, A. Kavousi-Fard, A. Khosravi, and S. Nahavandi, “Automated deep CNN-LSTM architecture design for solar irradiance forecasting,” IEEE Trans. Syst. Man Cybern. Syst., vol. 52, no. 1, pp. 54–65, 2022.
- L. Yang, M. Xu, Y. Guo, X. Deng, F. Gao, and Z. Guan, “Hierarchical Bayesian LSTM for head trajectory prediction on omnidirectional images,” IEEE Trans. Pattern Anal. Mach. Intell., 2021.
- J. Wu, X. Chen, H. Zhang, L.-D. Xiong, H. Lei, and S. Deng, “Hyperparameter optimization for machine learning models based on Bayesian optimization,” J. Electron. Sci. Technol., 2019.
- J. Chen, D. Pi, W. Zhiyuan, X. Zhao, Y. Pan, and Q. Zhang, “Imbalanced satellite telemetry data anomaly detection model based on Bayesian LSTM,” Acta Astronaut., 2021.
- D. Wu, Z. Jiang, X. Xie, X. Wei, W. Yu, and R. Li, “LSTM learning with Bayesian and Gaussian processing for anomaly detection in industrial IoT,” IEEE Trans. Ind. Inform., 2020.
- Y. Guo, J.-Y. Li, and Z.-H. Zhan, “Efficient hyperparameter optimization for convolution neural networks in deep learning: A distributed particle swarm optimization approach,” J. Stat. Comput. Simul., 2021.
- K. J. Iheanetu, “Solar photovoltaic power forecasting: A review,” Sustainability, vol. 14, no. 24, p. 17005, 2022.
- O. Koduri, R. Ramachandran, and M. Saiveerraju, “Empirical mode decomposition and optimization-assisted ANN-based fault classification schemes for series capacitor compensated transmission line,” J. Oper. Autom. Power Eng., vol. 13, no. 1, pp. 52–73, 2025.
- W. Zhang, D. Ma, J. J. Wei, and H. F. Liang, “A parameter selection strategy for particle swarm optimization based on particle positions,” Expert Syst. Appl., 2014.
- M. F. Rezaei, M. Gandomkar, and J. Nikoukar, “Optimizing multi-objective function for user-defined characteristics relays and size of fault current limiters in radial networks with renewable energy sources,” J. Oper. Autom. Power Eng., vol. 12, no. 1, pp. 42–53, 2024.
- D. Mora-Mariano and A. Flores-Tlacuahuac, “Bayesian LSTM framework for the surrogate modeling of process engineering systems,” Comput. Chem. Eng., 2024.
- U. Kubayev, S. Toshalieva, I. Ayubov, M. Farxodjon, Q. F. Ergash Ugli, Z. Jakhongir Rasulovich, T. B. Nietbaevich, A. A. Bektemirov, A. S. Seyranovna, R. Haydarovich Kushatov et al., “Adaptive islanding detection in microgrids using deep learning and fuzzy logic for enhanced stability and accuracy,” J. Oper. Autom. Power Eng., vol. 12, no. Special Issue, pp. 33–42, 2024.
- X. Ren, S. Liu, Y. Xiaodong, and D. Xia, “A method for state-of-charge estimation of lithium-ion batteries based on PSoLSTM,” Energy, 2021.
- C. Zhang, J. Butepage, H. Kjellstrom, and S. Mandt, “Advances in variational inference,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 41, no. 8, pp. 2008–2026, 2019.
- G. Tiwari and S. Saini, “Optimizing fault identification in power distribution systems by the combination of SVM and deep learning models,” J. Oper. Autom. Power Eng., 2024.
- Y.-C. Liu and P.-D. Leifsson, “Analysis of agricultural and engineering systems using simulation decomposition,” in Comput. Sci. – ICCS 2022. Cham: Springer, 2022, pp. 435–444.
- D. Talgatkyzy, N. Haroon, S. Hussein, S. K. Ibrahim, K. Jabbar, B. Mohammed, and S. Hameed, “Renewable energy resources development effect on electricity price: an application of machine learning model,” J. Oper. Autom. Power Eng., vol. 11, no. Special Issue, 2023.
- S. J. S. Kumar and K. N. Sam, “Multi-hybrid STL-LSTM-SDE-MA model optimized with IWOA for solar PV-power forecasting,” in Proc. IEEE Int. Conf. Power Electron. Smart Grid Renew. Energy, 2023, pp. 1–6.
- N. Almuratova, M. Mustafin, K. Gali, M. Zharkymbekova, D. Chnybayeva, and M. Sakitzhanov, “Enhancing microgrid resilience with LSTM and fuzzy logic for predictive maintenance,” J. Oper. Autom. Power Eng., vol. 12, no. Special Issue, pp. 7–15, 2024.
|