| تعداد نشریات | 31 |
| تعداد شمارهها | 447 |
| تعداد مقالات | 3,935 |
| تعداد مشاهده مقاله | 6,619,149 |
| تعداد دریافت فایل اصل مقاله | 4,409,727 |
Finite topological type of complete gradient shrinking GRF system solitons | ||
| Journal of Finsler Geometry and its Applications | ||
| مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 26 آبان 1404 اصل مقاله (269.51 K) | ||
| نوع مقاله: Original Article | ||
| شناسه دیجیتال (DOI): 10.22098/jfga.2025.18311.1182 | ||
| نویسندگان | ||
| Mohamad Yar Ahmadi* 1؛ Sina Hedayatian2 | ||
| 1Department of mathematics, Faculty of mathematics and computers sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran | ||
| 2Department of Mathematics, Faculty of Mathematical and Computer Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran | ||
| چکیده | ||
| This paper investigates the properties and topological implications of gradient shrinking general Ricci flow (GRF) system solitons. A GRF system soliton is a solution that evolves through a one-parameter family of diffeomorphisms or scaling transformations. Under specific geometric constraints, such as bounded Ricci curvature or positive injectivity radius, we establish a lower bound for the potential function associated with these solitons. Furthermore, we demonstrate that any complete gradient shrinking GRF system soliton exhibits finite topological type. These results extend the understanding of geometric flows, linking them to broader applications in differential geometry and topology. | ||
| کلیدواژهها | ||
| General Ricci flow؛ soliton؛ shrinking؛ finite topological type | ||
| مراجع | ||
|
1. S. Azami, Complete shrinking general Ricci Flow soliton systems. Math. Notes. 114(5)(2023), 675-678. 2. B. Bidabad and M. Yar Ahmadi, Complete Ricci solitons on Finsler manifolds, Sci.China. Math. 61 (2018), 1825-1832. https://doi.org/10.1007/s11425-017-9349-8 3. B. Bidabad and M. Yar Ahmadi, On complete Yamabe solitons, Adv. Geom. 18(1)(2018), 101-104. 4. B. Bidabad and M. Yar Ahmadi, On complete Finslerian yamabe solitons, Diff. Geom.Appl. 66 (2019), 52-60. 5. F.Q. Fang, J.W. Man and Z.L. Zhang, Complete gradient shrinking Ricci solitons have finite topological type, Comptes. Rendus. Math, 346(2008), 653-656. 6. M. Garcia-Fernandez and J. Streets, Generalized Ricci Flow, volume 76 of University Lecture Series. American Mathematical Society, Providence, 2021. 7. M. Ishida, On the Shrinking Entropy Functional for Generalized Ricci Flow, J. Geom.Anal. 35(5) (2025), p. 148. 8. KH. Lee, The Stability of Generalized Ricci Solitons, J. Geom. Anal. 33(9) (2023), 273. 9. B. List, Evolution of an extended Ricci flow system, Comm. Analysis. Geom. 2 (1968),1-7. 10. J. Y. Wu, A general Ricci flow system. J. Korean Math. Soc. 55(2) (2018), 253-292. 11. W. Wylie, Complete shrinking Ricci solitons have finite fundamental group, Proceedings of the AMS. 136(5) (2008), 1803-1806. 12. M. Yar Ahmadi and B. Bidabad, On compact Ricci solitons in Finsler geometry, C.R.Acad. Sci. Paris, Ser. I. 353 (2015), 1023-1027. 13. M. Yar Ahmadi, On the gradient Finsler Yamabe solitons, AUT J. Math. Comput.2(2020), 229-233. 14. M. Yar Ahmadi and S. Hedayatian, Finite topological type of complete Finsler gradient shrinking Ricci solitons, Turk. J. Math. 45(2021), 2419-2426. | ||
|
آمار تعداد مشاهده مقاله: 41 تعداد دریافت فایل اصل مقاله: 37 |
||