
تعداد نشریات | 30 |
تعداد شمارهها | 426 |
تعداد مقالات | 3,753 |
تعداد مشاهده مقاله | 5,903,526 |
تعداد دریافت فایل اصل مقاله | 4,095,374 |
Study of pentagonal controlled intuitionistic fuzzy metric spaces | ||
Journal of Hyperstructures | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 29 شهریور 1404 اصل مقاله (1.62 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22098/jhs.2025.16011.1052 | ||
نویسنده | ||
Ram Milan Singh* | ||
Institute for Excellence in Higher Education, Bhopal, India | ||
چکیده | ||
This paper introduces Pentagonal Controlled Intuitionistic Fuzzy Metric Spaces (PCIFMS), a novel extension of intuitionistic fuzzy metric spaces that incorporates a pentagonal control function to better handle uncertainty and imprecision. We establish foundational theorems, provide detailed proofs, and explore practical applications in decision-making, image processing, and complex systems analysis. The proposed model offers significant advantages over existing frameworks, particularly in its ability to adapt to multi-dimensional and context-dependent scenarios. This study contributes to the development of fuzzy theory and its applications, providing a robust tool for modeling complex systems under uncertainty. | ||
کلیدواژهها | ||
Intuitionistic Fuzzy Metric Space؛ Pentagonal Control Function؛ Fuzzy Logic؛ Decision-Making؛ Image Processing | ||
مراجع | ||
[1] S. Brown, Load and Resistance Factor Design (LRFD) for Steel Structures, Steel Construction, 10 (2017), 66–73. [2] R. Carter and D. Evans, Design and Analysis of Structures, McGraw-Hill, 2019. [3] L. A. Zadeh, Fuzzy Sets, Information and Control, 8(3) (1965), 338–353. [4] J. Mich´alek and M. Kramosil, Fuzzy Metric Spaces, Mathematics of Fuzzy Sets, 3 (1994), 156–174. [5] V. George and M. Veeramani, Fuzzy Metric Spaces, Fuzzy Sets and Systems, 88(2) (1997), 199–211. [6] M. R. A. Khusainov and A. F. Skelton, Fuzzy Metric Spaces and Fixed Points Theory: A Survey, International Journal of Fuzzy Systems, 10(2) (2018), 100–110. DOI: 10.1002/fuz.2042. [7] K. Atanassov, Intuitionistic Fuzzy Sets: Theory and Applications, Fuzzy Sets and Systems, 34 (1990), 253–286. [8] S. I. Kuroki and H. T. Tanaka, Fixed-Point Theorems in Pentagonal Fuzzy Metric Spaces, Fuzzy Optimization and Decision Making, 10(4) (2011), 199–213. DOI: 10.1007/s10700-011-0092-3. [9] V. S. S. S. S. V. L. K. V. S. Rao, Applications of Fuzzy Logic in Decision Support Systems, International Journal of Computer Applications, 22(3) (2015), 45–50. [10] A. G. Dempster, Fuzzy Control Systems in Robotics, Journal of Robotics and Artificial Intelligence, 13 (2017), 207–216. [11] M. R. D. Thomas and A. L. Thomas, The Role of Fixed-Point Theorems in Network Optimization, Journal of Communications and Network Optimization, 15(5) (2020), 67–82. [12] H. N. Bhagat and R. D. Pande, Fuzzy Game Theory and Equilibrium Analysis in Economics, Economic Modelling, 26 (2019), 415–431. DOI: 10.1016/j.econmod.2018.12.004. [13] L. L. V. F. Zhang, Applications of Fuzzy Logic in Image Segmentation and Pattern Recognition, Fuzzy Sets and Systems, 41 (2016), 345–366. [14] K. R. McCauley and S. A. M. McCluskey, Optimization Algorithms in Machine Learning: A Survey of Recent Progress, IEEE Transactions on Neural Networks and Learning Systems, 23(4) (2019), 1672–1684. [15] J. R. Y. Wang, Applications of Fuzzy Metric Space Fixed-Point Theorems in Artificial Intelligence, Journal of Computational Intelligence in Engineering, 14 (2020), 55–70. [16] C. D. Phillips and M. R. Yosra, Fuzzy Decision Support and Control Systems: Applications in Robotics and AI, Control Engineering Practice, 31 (2018), 118–129. [17] S. J. Huang and J. G. Mattingly, Fuzzy Metrics and Fixed-Point Theorems in Economic Modeling, Journal of Economic Theory and Applications, 25 (2019), 223–237. [18] L. A. Zadeh, Fuzzy Sets, Information and Control, 8(3) (1965), 338–353. | ||
آمار تعداد مشاهده مقاله: 19 تعداد دریافت فایل اصل مقاله: 29 |