
تعداد نشریات | 30 |
تعداد شمارهها | 415 |
تعداد مقالات | 3,656 |
تعداد مشاهده مقاله | 5,775,515 |
تعداد دریافت فایل اصل مقاله | 3,953,957 |
Finslerian metrics locally conformally R-Einstein | ||
Journal of Finsler Geometry and its Applications | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 29 مرداد 1404 اصل مقاله (408.06 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22098/jfga.2025.17608.1162 | ||
نویسندگان | ||
Serge Degla1؛ Gilbert Nibaruta* 2؛ Léonard Todjihounde3 | ||
1Filiere de Mathematiques et informatique, Ecole Normale Sup´erieure de Natitingou, Benin | ||
2Section de Mathématiques, Ecole Normale Supérieure du Burundi, Bujumbura, Burundi | ||
3Institut de Mathématiques et de Sciences Physiques, Centre d'Excellence, Porto-Novo, Bénin | ||
چکیده | ||
Let R be the hh-curvature associated with the Chern connection or the Cartan connection. Adopting the pulled-back tangent bundle approach to the Finslerian Geometry, an intrinsic characterization of R-Einstein metrics is given. Finslerian metrics which are locally conformally R-Einstein are classified | ||
کلیدواژهها | ||
Einstein metrics؛ Conformal deformations؛ Finslerian metrics؛ Ricci tensor؛ Warped product metric | ||
مراجع | ||
1. P. L. Antonelli, R. S. Ingarden and M. Matsumoto, The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology, Kluwer Academic Publishers, Dordrecht, 1993. 2. D. Bao, S.-S. Chern, and Z. Shen, An introduction to Riemann-Finsler Geometry, Springer-Verlang New York, (2000), 1-192. 3. D. Bao and C. Robles, Ricci and Flag Curvatures in Finsler Geometry, MSRI Publications, 50 (2004). 4. A. L. Besse, Einstein Manifolds, Springer-Verlag Berlin Heidelberg, (1987), 1-528. 5. H. W. Brinkmann, Riemann spaces conformal to Einstein spaces, Proc. Nat. Acad. Sci.USA, 9 (1923), 172-174. 6. C. N. Kozameh, E. T. Newman and K. P. Tod, Conformal Einstein Spaces, Gen. Rel.and Grav., 17 (1985), 343-344. 7. M. Listing, Conformal Einstein Spaces in N-dimensions, Ann. Glob. Anal. Geom.,20(2001), 183-197. 8. F. Massamba and J. S. Mbatakou, Induced and intrinsic Hashiguchi connections on Finsler submanifolds, Balkan J. Geom. Appl., 22(2) (2017), 50-62. 9. J.-S. Mbatakou, Intrinsic proofs of the existence of generalized Finsler connections, Int.Electron. J. Geom., 8, 1 (2015), 1-13. 10. G. Nibaruta, S. Degla and L. Todjihounde, Prescribed Ricci tensor in Finslerian conformal class, Balkan J. Geom. Appl., 23, 2 (2018), 41-55. 11. G. Nibaruta, S. Degla and L. Todjihounde, Finslerian Ricci Deformation and Conformal Metrics, J. Appl. Math. Phys., 6 (2018), 1522-1536. 12. W. K¨uhnel and H.-B. Rademacher, Conformally Einstein product spaces, E-print 2016,1-35. 13. Y.-B. Shen and Z. Shen, Introduction to Modern Finsler Geometry, Higher Education Press Limited Company and World Scientific Publishing Co. Pte. Ltd. (2016), 1-58. 14. P. Szekeres, Spaces Conformal to a Class of Spaces in General Gelativity, Proc. Roy. Soc. London, Ser. A., 274 (1963), 206-212. | ||
آمار تعداد مشاهده مقاله: 24 تعداد دریافت فایل اصل مقاله: 20 |