
تعداد نشریات | 30 |
تعداد شمارهها | 415 |
تعداد مقالات | 3,656 |
تعداد مشاهده مقاله | 5,775,515 |
تعداد دریافت فایل اصل مقاله | 3,953,957 |
Geometry of warped tangent bundles with Ricci-Flatness and shrinking solitions | ||
Journal of Finsler Geometry and its Applications | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 28 مرداد 1404 اصل مقاله (368.36 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22098/jfga.2025.17749.1168 | ||
نویسندگان | ||
Negar Yavari؛ Yousef Alipour-Fakhri* | ||
Department of Mathematics, Payame Noor University 19395-3697, Tehran, Iran | ||
چکیده | ||
In this paper, we investigate the geometric structure of the tangent bundle of a warped product of two pseudo-Riemannian manifolds. Let (M,g) and (M-,g-) be smooth pseudo-Riemannian manifolds, and consider thewarped product manifold (M×M-,g+e2fg-), where f is a smooth warping function. We construct a Sasaki–Matsumoto type lift of the warped metric to define a pseudo-Riemannian metric on the tangent bundle, which depends on a pair of smooth scalar functions and related to the total kinetic energy. We derive necessary and sufficient conditions under which the lifted metric on is Ricci-flat, expressed in terms of the curvature properties of the base manifold and the structure functions. Furthermore, we prove that, equipped with the metric, admits a one-parameter family of shrinking Ricci solitons. | ||
کلیدواژهها | ||
Ricci flat؛ warped pseudo Riemannian manifold؛ Ricci soliton | ||
مراجع | ||
1. Y. Alipour Fakhri and M. M. Rezaii, The warped Sasaki-Matsumoto metric and bundlelike condition, J. Math. Phy.51(2010), 122701. 2. B. Chow, et al, The Ricci Flow: Thechniques and Applications. Part I: Geometric Aspects, American Mathematical Socity, (2007). 3. R. Deszcz and M. Kucharski, On curvature properties of certain generalized RobertsonWalker spacetimes, Tsukuba J. Math. 23(1999) , 113-130. 4. J. Kern, Lagrange Geometry, Arch. Math. (Basel). 25(1974), 438-443. 5. G.I. Kruchkovich, On some class of Riemannian spaces(in Russian), Trudy sem. po vekt.i tenz. analizu 11(1961), 103-128. 6. V. Oproiu and N. Papaghiuc, Some Classes of Almost Anti-Hermitian Structures on the Tangent Bundle, Mediterr. j. math. 1(2004), 262-282. 7. N. Papaghiuc, A Ricci flat pseudo-Riemannian metric on the tangent bundle of a Riemannian manifold, Colloq. Math. 87 (2) (2001), 227-233, MR 1814664 (2002a:53086). | ||
آمار تعداد مشاهده مقاله: 27 تعداد دریافت فایل اصل مقاله: 14 |