
تعداد نشریات | 30 |
تعداد شمارهها | 426 |
تعداد مقالات | 3,753 |
تعداد مشاهده مقاله | 5,903,495 |
تعداد دریافت فایل اصل مقاله | 4,095,345 |
Assessment of climate change transformations and their impact on the hydrological regime of Gorgan Bay Wetland | ||
مدل سازی و مدیریت آب و خاک | ||
مقاله 1، دوره 5، ویژه نامه 1، 1404، صفحه 1-17 اصل مقاله (1.08 M) | ||
نوع مقاله: Special issue on "Climate Change and Effects on Water and Soil" | ||
شناسه دیجیتال (DOI): 10.22098/mmws.2025.17004.1568 | ||
نویسندگان | ||
Behzad Rayegani* 1؛ Susan Barati2؛ Mona Izadian3؛ Farhad Hosseini Tayefeh3؛ Seid Ghasem Ghorbanzadeh Zaferani1؛ Siavash Shamsipour4 | ||
1Research Group of Environmental Assessment and Risk, Research Center for Environment and Sustainable Development (RCESD), Department of Environment, Tehran, Iran | ||
2Soil Conservation and Watershed Management Research Institute (SCWMRI), Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran | ||
3Research Group of Biodiversity and Biosafety, Research Center for Environment and Sustainable Development (RCESD), Department of Environment, Tehran, Iran | ||
4Department of Environment, Tehran, Iran | ||
چکیده | ||
Wetlands offer critical ecosystem services, yet they are increasingly threatened by climate change. This study investigates the historical and projected hydrological dynamics of the Gorgan Bay Wetland, located in northern Iran along the Caspian Sea, which is highly sensitive to climate variability and upstream water management. Landsat imagery from 1984 to 2022, combined with field surveys and bathymetric modeling, was used to estimate changes in surface area and water volume. Spectral indices (NDWI, MNDWI) facilitated wetland delineation, while field-measured water depths informed volumetric analyses using TIN modeling. Climate variables, including temperature, precipitation, and snow-water equivalent, were obtained from the TerraClimate database. Pearson correlation and regression analyses assessed the impact of climatic factors, revealing a strong negative relationship between maximum temperature and both wetland area (r = -0.496) and volume (r = -0.479), and a positive correlation with snow water equivalent (r = 0.400). Results indicate a 24% reduction in surface area and a 47% decline in volume from 2015 to 2022. Scenario-based projections using IPCC AR6 (SSP2-4.5) suggest a 1.3–1.8°C rise in temperature by 2040, potentially reducing wetland area by approximately 4,494 hectares. Under higher-emission scenarios, losses could be more severe. These findings highlight the vulnerability of the wetland to ongoing warming and stress the need for adaptive water management strategies. Recommendations include increased environmental water allocations and modernized upstream irrigation. This study offers a robust, integrative framework for assessing climate-driven wetland change and supports policy efforts aimed at sustainable ecosystem management. | ||
کلیدواژهها | ||
Water depth؛ Storage volume؛ Landsat؛ Time series analysis؛ Wetland area | ||
مراجع | ||
References
Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., & Hegewisch, K. C. (2018). TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Scientific data, 5(1), 1-12. doi: 10.1038/sdata.2017.191 Ahmed, I. A., Shahfahad, S., Baig, M. R. I., Talukdar, S., Asgher, M. S., Usmani, T., Ahmed, S., & Rahman, A. (2021). Lake water volume calculation using time series LANDSAT satellite data: a geospatial analysis of Deepor Beel Lake, Guwahati. doi: 10.1108/FEBE-02-2021-0009 Baguma, C., & Barakagira, A. (2023). Effects of Wetland Degradation on Community Livelihoods: A Case of Mabengere Wetland in Kisiita Sub County, Kakumiro District, Uganda. Journal of Global Ecology and Environment. doi: 10.56557/jogee/2023/v19i18396 Berhanu, M., Suryabhagavan, K., & Korme, T. (2021). Wetland mapping and evaluating the impacts on hydrology, using geospatial techniques: a case of Geba Watershed, Southwest Ethiopia. Geology, Ecology, and Landscapes, 7, 293-310. doi: 10.1080/24749508.2021.1953744 Boldyrev, S., Levykh, A., & Zamyatin, D. (2023). Wetlands dynamics analysis: a case study of Keoladeo National Park (India), the wintering grounds of West Siberian white crane population. Samara Journal of Science. doi: 10.55355/snv2023123103 Bradbury, G., Puttock, A., Coxon, G., Clarke, S., & Brazier, R. E. (2023). Testing a novel sonar‐based approach for measuring water depth and monitoring sediment storage in beaver ponds. River Research and Applications, 39(2), 266-273. Chen, S., Johnson, F., & Glamore, W. (2021). Integrating Remote Sensing and Numerical Modeling to Quantify the Water Balance of Climate‐Induced Intermittent Wetlands. Water Resources Research, 57. doi: 10.1029/2020WR029310 Chen, Y., Wang, L., Shi, X., Zeng, C., Wang, Y., Wang, G., Qiangba, C., Yue, C., Sun, Z., Renzeng, O., & Zhang, F. (2023). Impact of Climate Change on the Hydrological Regimes of the Midstream Section of the Yarlung Tsangpo River Basin Based on SWAT Model. Water. doi: 10.3390/w15040685 Cui, Q., Ammar, M., Iravani, M., Kariyeva, J., & Faramarzi, M. (2021). Regional wetland water storage changes: The influence of future climate on geographically isolated wetlands. Ecological Indicators, 120, 106941. doi: 10.1016/J.ECOLIND.2020.106941 Das, S., Bhunia, G. S., Bera, B., & Shit, P. K. (2021). Evaluation of wetland ecosystem health using geospatial technology: evidence from the lower Gangetic flood plain in India. Environmental Science and Pollution Research. doi: 10.1007/s11356-021-15674-9 Demarquet, Q., Rapinel, S., Arvor, D., Corgne, S., & Hubert‐Moy, L. (2024). Satellite Long-Term Monitoring of Wetland Ecosystem Functioning in Ramsar Sites for Their Sustainable Management. Sustainability. doi: 10.3390/su16156301 Dewi, R., Sofian, I., & Suprajaka. (2022). The application of satellite derived bathymetry for coastline mapping. IOP Conference Series: Earth and Environmental Science, 950. doi: 10.1088/1755-1315/950/1/012088 Doughty, C. L., Gu, H., Ambrose, R. F., Stein, E. D., Sloane, E. B., Martinez, M., & Cavanaugh, K. C. (2024). Climate drivers and human impacts shape 35‐year trends of coastal wetland health and composition in an urban region. Ecosphere, 15(4), e4832. doi: 10.1002/ecs2.4832 Eaton, M., Terando, A., & Collazo, J. (2024). Applying portfolio theory to benefit endangered amphibians in coastal wetlands threatened by climate change, high uncertainty, and significant investment risk. Frontiers in Conservation Science. doi: 10.3389/fcosc.2024.1444626 Ehsani, A., & Shakeryari, M. (2021). Monitoring of wetland changes affected by drought using four Landsat satellite data and Fuzzy ARTMAP classification method (case study Hamoun wetland, Iran). Arabian Journal of Geosciences, 14. doi: 10.1007/s12517-020-06320-8 Fahrländer, S. F., Wang‐Erlandsson, L., Pranindita, A., & Jaramillo, F. (2024). Hydroclimatic vulnerability of wetlands to upwind land use changes. Earth's Future, 12(3), e2023EF003837. doi: 10.1029/2023EF003837 Gergel, D., Malevich, S., McCusker, K., Tenezakis, E., Delgado, M., Fish, M., & Kopp, R. (2024). Global Downscaled Projections for Climate Impacts Research (GDPCIR): preserving quantile trends for modeling future climate impacts. Geoscientific Model Development. doi: 10.5194/gmd-17-191-2024 Hariski, M., Kusumastuti, N., & Yudhi, Y. (2024). Cubic spline interpolation to approximate sea depth between Teluk Suak and Lemukutan Island. Epsilon: Jurnal Matematika Murni dan Terapan (Epsilon: Journal of Pure and Applied Mathematics), 18(1). doi:10.20527/epsilon.v18i1.10813) Hemati, M., Mahdianpari, M., Hasanlou, M., & Mohammadimanesh, F. (2022). Iranian Wetland Hydroperiod Change Detection Using an Unsupervised Method on 20 Years of Landsat Data Within the Google Earth Engine. IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, 6209-6212. doi: 10.1109/IGARSS46834.2022.9884716 Igaz, D., Šinka, K., Varga, P., Vrbičanová, G., Aydın, E., & Tárník, A. (2021). The evaluation of the accuracy of interpolation methods in crafting maps of physical and hydro-physical soil properties. Water, 13(2), 212. doi: 10.3390/w13020212 Khoshravan, H. , Alinejad-Tabrizi, T. and Naqinezhad, A. (2022). Hydromorphology and environmental restoration of Gorgan Bay, the Southeast Caspian Sea. Caspian Journal of Environmental Sciences, 20(1), 17-28. doi: 10.22124/cjes.2022.5388 Kim, T., & Villarini, G. (2024). Projected changes in daily precipitation, temperature and wet‐bulb temperature across Arizona using statistically downscaled CMIP6 climate models. International Journal of Climatology, 44, 1994-2010. doi: 10.1002/joc.8436 Kumari, S., Wu, J., Ayala-Cabrera, D., & Dev, S. (2024). Effective Water Body Extraction from Hyperspectral Data: A Focus on Unsupervised Band Indices. 2024 IEEE 9th International Conference on Computational Intelligence and Applications (ICCIA), 251-255. doi: 10.1109/ICCIA62557.2024.10719176 Lawen, J., Lawen, K., Salman, G., & Schuster, A. (2022). Multi-Band Bathymetry Mapping with Spiking Neuron Anomaly Detection. Water. doi: 10.3390/w14050810 Leiva-Piedra, J. L., Ramírez-Juidias, E., & Amaro-Mellado, J.-L. (2024). Use of Geomatic Techniques to Determine the Influence of Climate Change on the Evolution of the Doñana Salt Marshes’ Flooded Area between 2009 and 2020. Applied Sciences, 14(16), 6919. doi: 10.3390/app14166919 Mahdian, M., Noori, R., Salamattalab, M., Heggy, E., Bateni, S., Nohegar, A., Hosseinzadeh, M., Siadatmousavi, S., Fadaei, M., & Abolfathi, S. (2024). Anzali Wetland Crisis: Unraveling the Decline of Iran's Ecological Gem. Journal of Geophysical Research: Atmospheres, 129. doi: 10.1029/2023JD039538 Mann, J., Maddox, E., Shrestha, M., Irwin, J., Czapla-Myers, J., Gerace, A., Eon, R., Raqueno, N., Coburn, C., Byrne, G., Broomhall, M., & Walsh, A. (2024). Landsat 8 and 9 Underfly International Surface Reflectance Validation Collaboration. Remote. Sens., 16, 1492. doi: 10.3390/rs16091492 MeghrajK, C., Leigh, L., Pinto, C., & Kaewmanee, M. (2023). Method of Validating Satellite Surface Reflectance Product Using Empirical Line Method. Remote. Sens., 15, 2240. doi: 10.3390/rs15092240 Modi, P., Small, E., Kasprzyk, J., & Livneh, B. (2022). Investigating the role of snow water equivalent on streamflow predictability during drought. Journal of Hydrometeorology. doi: 10.1175/jhm-d-21-0229.1 Moyers, K., Abatzoglou, J., Escriva-Bou, A., Medellín-Azuara, J., & Viers, J. (2024). An invisible water surcharge: Climate warming increases crop water demand in the San Joaquin Valley’s groundwater-dependent irrigated agriculture. PLOS Water. doi: 10.1371/journal.pwat.0000184 Nyandwi, O., & Ndikubwimana, I. (2024). The Effects of Wetland Degradation on Ecological Species. International Journal of Innovative Science and Research Technology (IJISRT). doi: 10.38124/ijisrt/ijisrt24apr1244 Rachidi, S., Mazoudi, E. E., Alami, J. E., Jadoud, M., & Er-Raki, S. (2023). Assessment and Comparison of Satellite-Based Rainfall Products: Validation by Hydrological Modeling Using ANN in a Semi-Arid Zone. Water. doi: 10.3390/w15111997 Rajeswari, S., & Rathika, P. (2024). Exploring Spectral Indices for Improved Water Body Classification in Landsat Imagery. 2024 Third International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS), 1-5. doi: 10.1109/INCOS59338.2024.10527525 Rostami, E., Vahid, R., Zarei, A., & Amani, M. (2024). Dynamic Analysis of Water Surface Extent and Climate Change Parameters in Zarivar Lake, Iran. ECRS 2023. doi: 10.3390/ecrs2023-17345 Shin, S., Her, Y., & Khare, Y. (2023). Evaluation of impacts of climate change on natural and managed wetland basins. JAWRA Journal of the American Water Resources Association, 59, 1549-1568. doi: 10.1111/1752-1688.13140 Singha, C., Sahoo, S., Govind, A., Pradhan, B., Alrawashdeh, S., Aljohani, T. H., Almohamad, H., Islam, A. R. M. T., & Abdo, H. G. (2023). Impacts of hydroclimate change on climate-resilient agriculture at the river basin management. Journal of Water and Climate Change. doi: 10.2166/wcc.2023.656 Tan, Z., Leung, L., Liao, C., Carniello, L., Rodríguez, J., Saco, P., & Sandi, S. (2024). A multi-algorithm approach for modeling coastal wetland eco-geomorphology. Frontiers in Earth Science. doi: 10.3389/feart.2024.1421265 Ticehurst, C., Teng, J., & Sengupta, A. (2022). Development of a Multi-Index Method Based on Landsat Reflectance Data to Map Open Water in a Complex Environment. Remote. Sens., 14, 1158. doi: 10.3390/rs14051158 Toombs, N., Chapman, S., Trancoso, R., Zhang, H., Owens, D., & Syktus, J. (2023). A snapshot of climate change impacts for Queensland and regions using high-resolution downscaled CMIP6 projections. MODSIM2023, 25th International Congress on Modelling and Simulation. doi: 10.36334/modsim.2023.toombs Trabelsi, R., & Abida, H. (2024). Wetland water balance estimation in an arid region using remote sensing technology and hydrological modelling. Hydrological Sciences Journal, 69, 905-922. doi: 10.1080/02626667.2024.2343353 Wen, L., & Hughes, M. (2022). Coastal Wetland Responses to Sea Level Rise: The Losers and Winners Based on Hydro-Geomorphological Settings. Remote. Sens., 14, 1888. doi: 10.3390/rs14081888 Zheng, Q., Huang, X., Zheng, T., He, J., Xiang, M., Qin, M., & Jin, K. (2024). The Abrupt Change in Potential Evapotranspiration and Its Climatic Attribution over the Past 50 Years in the Sichuan–Chongqing Region, China. Atmosphere. doi: 10.3390/atmos15070829 | ||
آمار تعداد مشاهده مقاله: 382 تعداد دریافت فایل اصل مقاله: 239 |