- M. H. Saeed, W. Fangzong, B. A. Kalwar, and S. Iqbal, “A review on microgrids’ challenges & perspectives,” IEEE Access, vol. 9, pp. 166502–166517, 2021.
- G. Shahgholian, “A brief review on microgrids: Operation, applications, modeling, and control,” Int. Trans. Electr. Energy Syst., vol. 31, no. 6, p. e12885, 2021.
- K. Keisang, T. Bader, and R. Samikannu, “Review of operation and maintenance methodologies for solar photovoltaic microgrids,” Front. Energy Res., vol. 9, p. 730230, 2021.
- J. Hu, Y. Shan, J. M. Guerrero, A. Ioinovici, K. W. Chan, and J. Rodriguez, “Model predictive control of microgrids–an overview,” Renewable Sustainable Energy Rev., vol. 136, p. 110422, 2021.
- M. Arafat, M. Hossain, and M. M. Alam, “Machine learning scopes on microgrid predictive maintenance: Potential frameworks, challenges, and prospects,” Renewable Sustainable Energy Rev., vol. 190, p. 114088, 2024.
- F. M. Almasoudi, “Enhancing power grid resilience through real-time fault detection and remediation using advanced hybrid machine learning models,” Sustainability, vol. 15, no. 10, p. 8348, 2023.
- P. Solainayagi, “Decentralized energy using iot and cloud computing for enhancing grid resilience through microgrid integration,” in 2024 6th Int. Conf. Energy Power Environ., pp. 1–6, IEEE, 2024.
- M. Elsisi, C.-L. Su, C.-H. Lin, and T.-T. Ku, “Enhancing resilient operation of distributed energy resources using reliable machine learning-based iot connectivity,” in 2024 IEEE/IAS 60th Ind. Commer. Power Syst. Tech. Conf., pp. 1–6, IEEE, 2024.
- K. Gokulraj and C. Venkatramanan, “Advanced machine learning-driven security and anomaly identification in inverterbased cyber-physical microgrids,” Electr. Power Compon. Syst., pp. 1–18, 2024.
- U. AlHaddad, A. Basuhail, M. Khemakhem, F. E. Eassa, and K. Jambi, “Towards sustainable energy grids: A machine learning-based ensemble methods approach for outages estimation in extreme weather events,” Sustainability, vol. 15, no. 16, p. 12622, 2023.
- J. Wang, P. Pinson, S. Chatzivasileiadis, M. Panteli, G. Strbac, and V. Terzija, “On machine learning-based techniques for future sustainable and resilient energy systems,” IEEE Trans. Sustainable Energy, vol. 14, no. 2, pp. 1230–1243, 2022.
- H. Shayeghi and E. Shahryari, “Optimal operation management of grid-connected microgrid using multiobjective group search optimization algorithm,” J. Oper. Autom. Power Eng., vol. 5, no. 2, pp. 227–239, 2017.
- A. Dizaji, M. Saniei, and K. Zare, “Resilient operation scheduling of microgrid using stochastic programming considering demand response and electric vehicles,” J. Oper. Autom. Power Eng., vol. 7, pp. 157–67, 2019.
- K. Masoudi and H. Abdi, “Multi-objective stochastic programming in microgrids considering environmental emissions,” J. Oper. Autom. Power Eng., vol. 8, no. 2, pp. 141–151, 2020.
- L. Duchesne, E. Karangelos, and L. Wehenkel, “Recent developments in machine learning for energy systems reliability management,” Proc. IEEE, vol. 108, no. 9, pp. 1656–1676, 2020.
- F. Aminifar, M. Abedini, T. Amraee, P. Jafarian, M. H. Samimi, and M. Shahidehpour, “A review of power system protection and asset management with machine learning techniques,” Energy Syst., vol. 13, no. 4, pp. 855–892, 2022.
- Y. Fassi, V. Heiries, J. Boutet, and S. Boisseau, “Towards physics-informed machine learning-based predictive maintenance for power converters–a review,” IEEE Trans. Power Electron., 2023.
- M. S. Qureshi, S. Umar, and M. U. Nawaz, “Machine learning for predictive maintenance in solar farms,” Int. J. Adv. Eng. Technol. Innovations, vol. 1, no. 3, pp. 27–49, 2024.
- M. A. Mahmoud, N. R. Md Nasir, M. Gurunathan, P. Raj, and S. A. Mostafa, “The current state of the art in research on predictive maintenance in smart grid distribution network: Fault’s types, causes, and prediction methods—a systematic review,” Energies, vol. 14, no. 16, p. 5078, 2021.
- R. K. Kaushal, K. Raveendra, N. Nagabhooshanam, M. Azam, G. Brindha, D. Anand, L. Natrayan, and K. Rambabu, “Fault prediction and awareness for power distribution in grid connected res using hybrid machine learning,” Electr. Power Compon. Syst., pp. 1–22, 2024.
- A. T. Eseye, X. Zhang, B. Knueven, and W. Jones, “Enhancing distribution grid resilience through model predictive controller enabled prioritized load restoration strategy,” in 2020 52nd N. Am. Power Symp., pp. 1–6, IEEE, 2021.
- J.-F. Toubeau, L. Pardoen, L. Hubert, N. Marenne, J. Sprooten, Z. De Grève, and F. Vallée, “Machine learning-assisted outage planning for maintenance activities in power systems with renewables,” Energy, vol. 238, p. 121993, 2022.
- J. Wang, P. Pinson, S. Chatzivasileiadis, M. Panteli, G. Strbac, and V. Terzija, “On machine learning-based techniques for future sustainable and resilient energy systems,” IEEE Trans. Sustainable Energy, vol. 14, no. 2, pp. 1230–1243, 2022.
- [24] H. Noorazar, A. Srivastava, S. Pannala, and S. K Sadanandan, “Data-driven operation of the resilient electric grid: A case of covid-19,” J. Eng., vol. 2021, no. 11, pp. 665–684, 2021.
- E. Ghayoula, J. Fattahi, R. Ghayoula, E. Pricop, G. Stamatescu, J.-Y. Chouinard, and A. Bouallegue, “Sidelobe level reduction in linear array pattern synthesis using taylormusic algorithm for reliable ieee 802.11 mimo applications,” in 2016 IEEE Int. Conf. Syst. Man Cybern., pp. 004700– 004705, IEEE, 2016.
- K. Gokulraj and C. Venkatramanan, “Advanced machine learning-driven security and anomaly identification in inverterbased cyber-physical microgrids,” Electr. Power Compon. Syst., pp. 1–18, 2024.
- A. Hamdan, K. I. Ibekwe, V. I. Ilojianya, S. Sonko, E. A. Etukudoh, et al., “Ai in renewable energy: A review of predictive maintenance and energy optimization,” Int. J. Sci. Res. Arch., vol. 11, no. 1, pp. 718–729, 2024.
- O. Koduri, R. Ramachandran, and M. Saiveerraju, “Empirical mode decomposition and optimization assisted ann based fault classification schemes for series capacitor compensated transmission line,” J. Oper. Autom. Power Eng., vol. 13, no. 1, pp. 52–73, 2025.
- F. M. Almasoudi, “Enhancing power grid resilience through real-time fault detection and remediation using advanced hybrid machine learning models,” Sustainability, vol. 15, no. 10, p. 8348, 2023.
- F. M. Shiri, T. Perumal, N. Mustapha, and R. Mohamed, “A comprehensive overview and comparative analysis on deep learning models: Cnn, rnn, lstm, gru,” ArXiv Preprint ArXiv:2305.17473, 2023.
|