تعداد نشریات | 27 |
تعداد شمارهها | 366 |
تعداد مقالات | 3,243 |
تعداد مشاهده مقاله | 4,753,779 |
تعداد دریافت فایل اصل مقاله | 3,244,680 |
Study of η-einstein soliton on α-sasakian manifold admitting schouten-van kampen connection | ||
Journal of Hyperstructures | ||
دوره 13، شماره 2، 2024، صفحه 284-296 اصل مقاله (1.6 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22098/jhs.2024.15514.1032 | ||
نویسندگان | ||
Abhijit Mandal* 1؛ Meghlal Mallik2؛ Rima Das1؛ Gopan Saha1؛ Enamul Hoque1؛ Md Rejuan1 | ||
1Department of Mathematics, Raiganj Surendranath Mahavidyalaya | ||
2Department of Mathematics, Raiganj Surendranath Mahavidyalaya, Raiganj, west Bengal, India | ||
چکیده | ||
The purpose of the present paper is to study some properties of α -Sasakian manifolds with respect to Schouten-van Kampen connection. We study η-Einstein soliton on pseudo-projectively flat α-Sasakian manifolds with respect to Schouten-van Kampen connection. Further, we discuss η-Einstein soliton on quasi-concircularly flat and Wi-flat α-Sasakian manifolds with respect to this connection. | ||
کلیدواژهها | ||
α-Sasakian manifolds؛ Schouten-van Kampen nconnection؛ η-Einstein soliton؛ pseudo-projective curvature tensor؛ quasi-concircular curvature tensor؛ Wi-curvature tensor | ||
مراجع | ||
[1] M. Ahmad, A. Haseeb, J. B. Jun, Quasi-concircular curvature tensor on a Lorentzian β-Kenmotsu manifold, J. Chungcheong Math. Soc., 32(3) (2019), 281-293. [2] S. R. Ashoka, C. S. Bagewadi and G. Ingalahalli, Certain Results on Ricci Solitons in α-Sasakian Manifolds, (2013), Article ID 573925, 4 Pages. [3] A. Bejancu, Schouten-van Kampen and Vranceanu connections on Foliated manifolds, Anale Stintifice Ale Universitati. \AL.I. CUZA" IASI, Tomul LII, Mathematica, (2006), 37-60. [4] A. M. Blaga, On Gradient -Einstein solitons, Kragujev. J. Math., 42(2) (2018), 229-237. [5] G. Catino and L. Mazzieri, Gradient Einstein Solitons, Nonlinear Anal., 132 (2016), 66-94. [6] G. Ingalahalli, C. S. Bagewadi, Ricci Solitons in -Sasakian Manifolds, International Scholarly Research Notices, (2012), Article ID 421384, 13 pages. [7] R. S. Hamilton, The Ricci ow on surfaces, Math. and General Relativity, American Math. Soc. Contemp. Math., 7(1) (1988), 232-262. [8] H. G. Nagaraja and C. R. Premalatha, Ricci solitons in Kenmotsu manifolds, J. of Mathematical Analysis, 3(2) (2012), 18-24. [9] H. G. Nagarjuna and G. Somashekhara, On pseudo projective Curvature tensor in sasakian Manifolds, Int. J. Contemp. Math. Sciences, 6(27) (2011), 1319 - 1328. 296 A. Mandal, M. Mallik, R. Das, G. Saha, E. Hoque and Md. Rejuan [10] D. Narain, A. Prakash and B. Prasad, A pseudo projective Curvature tensor on a Lorentzian Para Sasakian manifold, Analele Stiinti ce ale Universitatii Al l cuza din lasi- Mathematica, 55(2) (2009), 275-284. [11] D. Narain, A. Prakash and B. Prasad, Quasi-concircular curvature tensor on a Lorentzian para-Sasakian manifold, Bull. Cal. Math. Soc., 101(4) (2009), 387-394. [12] B. Prasad, On pseudo projective curvature tensor on a Riemannian manifold, Bull. Cal. Math. Soc, 94(3) (2002), 163-166. [13] B. Prasad, A. Mourya, Quasi-concircular curvature tensor on a Riemannain manifold, News Bull. Cal. Math. Soc., 30 (2007), 5-6. [14] G. P. Pokhariyal and R. S. Mishra, Curvature tensors and their relativistic signi cance, Yokohama Math. J., 18 (1970), 105-108. [15] V. V. Reddy, R. Sharma and S. Sivaramkrishan, Space times through Hawking-Ellis construction with a back ground Riemannian metric, Class Quant. Grav., 24(13) (2007), 3339-3346. [16] J. A. Schouten and E. R. Van Kampen, Zur Einbettungs-und Krummungstheorie nichtholonomer Gebilde, Math. Ann., 103 (1930), 752-783. [17] A. A. Shaikh and H. Kundu, On equivalency of various geometric structures, Journal of Geometry, 105(1) (2014), 139-165. [18] R. Sharma, Certain results on K-contact and (k; )-contact manifolds, J. of Geometry, 89 (2008), 138-147. [19] A. Sil, Some Properties of -Sasakian manifolds, Palestine Journal of Mathematics, 6(2) (2017), 327-332. [20] A. Singh, R. K. Pandey, A. Prakash and S. Khare, On a pseudo projective -Recurrent Sasakian Manifolds, J. of Math. and Computer Sciences, 14 (2015), 309-314. [21] M. M. Tripathi and P. Gupta, On τ-curvature tensor in K-contact manifold and Sasakian manifold, International Electronic Journal of Mathematics, 04 (2011), 32-47. [22] M. M. Tripathi, Ricci solitons in contact metric manifold, ArXiv: 0801. 4222 vl [math. D. G.], (2008). [23] G. Vranceanu, Sur quelques points de la theorie des espaces non holonomes, Bull. Fac. St. Cernauti, 5 (1931), 177-205. | ||
آمار تعداد مشاهده مقاله: 66 تعداد دریافت فایل اصل مقاله: 64 |