تعداد نشریات | 27 |
تعداد شمارهها | 366 |
تعداد مقالات | 3,243 |
تعداد مشاهده مقاله | 4,753,763 |
تعداد دریافت فایل اصل مقاله | 3,244,669 |
(1/2,1/2)-Fuzzy QS–ideals and its correlation coefficients | ||
Journal of Hyperstructures | ||
دوره 13، شماره 2، 2024، صفحه 188-203 اصل مقاله (1.43 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22098/jhs.2024.15397.1026 | ||
نویسندگان | ||
Mostafa Abdelfattah Hassan* 1؛ Samy Mohammed Mostafa2 | ||
1Department of Mathematics, Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt | ||
2Department of Mathematics, Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt. | ||
چکیده | ||
As an extension of intuitionistic fuzzy sets, we introduce the notion of -fuzzy set ( denoted by SSR) of QS -ideals on a OS -algebra and investigate its properties. Furthermore we study the homomorphic image and inverse image of SSR -fuzzy QS -ideals of a QS -algebra under homomorphism of QS -algebras. Moreover, the Cartesian product of SSR -fuzzy QS -ideals in Cartesian product QS-algebras is given. Finally, novel correlation coefficient between two SSR- fuzzy sets are also studied. | ||
کلیدواژهها | ||
QS-subalgebra؛ Image under homomorphism؛ Cartesian product | ||
مراجع | ||
[1] S. S. Ahn and H. S. Kim, On QS-algebras, J. Chungcheong Math. Soc. , 12 (1999), 33-41. [2] S. S. Ahn, H. S. Kim, S. Z. Song and Y. B. Jun, The (2; 3)-fuzzy set and its application in BCK-algebras and BCI-algebras, J. Math. Computer Sci., 27 (2022), 118-130. [3] K. Atanassov K, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96. [4] I. Baek Jong, S. Hyeon Han, S. M. Mostafa and K. Hur, Correlation coecient between intuitionistic single-valued neutrosophic sets and its applications, Ann. Fuzzy Math. Inform., 23(1) (2022), 81-105 [5] M. A. Bashar and Shaplashirin, Squares and squareroots of continuous fuzzy numbers, Dhaka Univ. J. Sci., 53(2) (2005), 131-14. [6] A. Bryniarska, The n-Pythagorean fuzzy sets, Symmetry, 12 (2020), 1772. [7] T. Byun, E. Lee and J. H. Yoon, Delta root: a new de nition of a square root of fuzzy numbers, Soft Comput 26, 634169 (2022). https://doi.org/10.1007/s00500-022-06808-3. [8] D. A. Chiang and N. P. Lin, Correlation of fuzzy sets, Fuzzy Sets and Systems, 102 (1999), 221-226. [9] T. Gerstenkorn and J. Manko, Correlation of intuitionistic fuzzy sets, Fuzzy Sets and Systems, 44 (1991), 3943. [10] A. T. Hameed, A. A. Alfatlawi and A. K. Alkurdi, Fuzzy QS-ideals of QS-algebra, International Journal of Algebra, 11(1) (2017), 43-52. [11] H. Z. Ibrahim, M. Al-shamiand and O. G. Elbarbary, (3; 2)-Fuzzy sets and their applications to topology and computational optimal choices intelligence and neuroscience, 2021, Article ID 1272266, 14 pages. [12] K. Iseki, On BCI-algebras, Mathematics Seminar Notes, 8(1) (1980), 125-130. [13] K. Iseki and S. Tanaka, An introduction to the theory of BCK-algebras, Mathematica Japonica, 23 (1) (1978), 126. [14] K. Iseki and S. Tanaka, Ideal theory of BCK-algebras, Mathematica Japonica, 21(4) (1976), 351-366. [15] Y. B. Jun and k. Hur, The (m; n)-fuzzy set and its application in BCK-algebras, Ann. Fuzzy Math. Inform., 24(1), (2022), 17-29. [16] M. Kondo, On the class of QS-algebras, IJMMS, 49 (2004), 2629-2639. [17] J. Neggers, S. S. Ahn and H. S. Kim, On Q-algebras, IJMMS, 27 (2001), 749-757. [18] A. B. Saeid, Fuzzy QS-algebras with interval-valued membership functions, Bull. Malays. Math. Sci. Soc., 29 (2) (2006), 169-177. [19] Y. A. Salih and Z. I. Hariwan, CR-fuzzy sets and their applications, J. Math. Computer Sci., 28 (2023), 171181 [20] T. M. Al-shami, H. Z. Ibrahim, A. A. Azzam and A. I. EL-Maghrabi SR-Fuzzy Sets and Their Weighted Aggregated Operators in Application to Decision-Making J. Funct. Spaces, 2022, Article ID 3653225, 14 pages. [21] T. Senapati and R. R. Yager, Fermatean fuzzy sets, Journal of Ambient Intelligence and Humanized Computing, 11 (2020), 663-674. [22] R. R. Yager, Pythagorean fuzzy subsets, Proceedings of the 2013 joint IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS), 2012, 5761, IEEE, Edmonton, Canada. [23] R. R. Yager, Pythagorean membership grades in multi-criteria decision making, Technical report MII-3301 Machine Intelligence Institute, 2013, Iona College, New Rochelle, NY. [24] O. G. Xi, Fuzzy BCK-algebras, Mathematica Japonica, 36(5) (1991), 935-942. [25] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353. | ||
آمار تعداد مشاهده مقاله: 31 تعداد دریافت فایل اصل مقاله: 63 |