- 1. S.I. Amari Differential-geometrical methods in statistics, Springer Lect Notes Statist,
Springer-Verlag, 1985.
- 2. S.I. Amari, and H. Nagaoka, Methods of Information Geometry, Oxford University Press,
AMS Translations of Math Monographs 191, 2000.
- 3. P.L. Antonelli, R.S. Ingarden, and M. Matsumoto, The theory of sprays and Finsler
spaces with applications in physics and biology, FTPH 58, Kluwer Academic Publishers, 1993.
- 4. G.S. Asanov, Finsler Geometry, Relativity and Gauge Theories, D Reidel Publishing
Company, Dordrecht, Holland, 1985.
- 5. S. B´acs´o, and M. Matsumoto, On Finsler spaces of Douglas type IV: Projectively flat
Kropina spaces, Publ. Math. Debrecen 56 (2000), 213-221.
- 6. S. B´acs´o, and M. Matsumoto, On Finsler spaces of Douglas type. A generalization of
the notion of Berwald space, Publ. Math. Debrecen 51 (1997), 385-406.
- 7. X. Cheng, Z. Shen, and Y. Zhou, On a class of locally dually flat Finsler metrics, J.
Math. 21 (2005), 1-13.
- 8. X. Cheng, and Y. Tian, Locally dually flat Finsler metrics with special curvature properties, Differential Geom. Appl. 29 (2011), 98-106.
- 9. S.S. Chern, and Z. Shen, Riemann-Finsler geometry, Nankai Tracts in Mathematics,
Vol. 6, Word Scientific, 2005.
- 10. N. Cui, and Y. Shen, Projective change between two classes of (α, β)-metrics, Differential
Geom. Appl. 27 (2009), 566-573.
- 11. G. Hamel, Uber die Geometrieen, in denen die Geraden die K¨urzesten sind ¨ , Math Ann
57 (1903), 231-264.
- 12. V.K. Kropina, On projective two-dimensional Finsler spaces with a special metric, Trudy
Sem. Vektor Tenzor Anal. 11 (1961), 277-292.(in Russian).
- 13. B. Li, Projectively flat Matsumoto metric and its approximation, Acta Math. Sci. 27
(2007), 781-789.
- 14. B. Li, Y. Shen, and Z. Shen, On a class of Douglas metric, Stud. Sci. Math. Hung. 46
(2009), 355-365.
- 15. M. Matsumoto, Projective flat Finsler spaces with (α, β)-metric, Rep. Math. Phys. 30
(1991), 15-20.
- 16. H.S. Park, and Y.D. Lee, Finsler spaces with certain (α, β)-metric of Douglas type,
Comm. Korean Math. Soc. 16 (2001), 649-658.
- 17. R. Ranjan, P.N. Pandey, and A. Paul, On a class of locally dually flat (α, β)-metric,
Differ. Geom. Dyn. Syst. 22 (2020), 208-217.
- 18. Z. Shen, Projectively flat Randers metrics of constant curvature, Math. Ann. 325 (2003),
19-30.
- 19. Z. Shen, Riemann-Finsler geometry with application to information geometry, Chin.
Ann. Math. B 27 (2006), 73-94.
- 20. Z. Shen, On projectively flat (α, β)-metrics, Canad. Math. Bull. 52 (2009), 132-144.
- 21. Z. Shen, and G. Civi Yildirim, On a Class of Projectively Flat Metrics with Constant
Flag Curvature, Canad. J. Math. 60 (2008), 443-456.
- 22. A. Tayebi, and M. Amini, On conformally flat exponential (α, β)-metrics, Proc. Natl.
Acad. Sci. India Sect. A Phys. Sci. 92 (2022), 353-365.
- 23. A. Tayebi, and T. Tabatabeifar, Unicorn metrics with almost vanishing H- and Ncurvatures, Turkish J. Math. 41 (2017), 998-1008.
- 24. A. Tayebi, T. Tabatabaeifar, and E. Peyghan, On Kropina Change of m-th Root Finsler
Metrics, Ukrainian Math. J. 66 (2014), 160-164.
- 25. A. Tayebi, H. Sadeghi, and E. Peyghan, On a class of locally dually flat (α, β)-metrics,
Math. Slovaca 65 (2015), 191-198.
- 26. Q. Xia, On a class of locally dually flat Finsler metrics of isotropic flag curvature. Publ.
Math. Debrecen 78 (2011), 169–190.
- 27. Q. Xia, On locally dually flat (α, β)-metrics, Differential Geom. Appl. 29 (2011), 233-243.
- 28. R. Yoshikawa, and S.V. Sabau, Kropina metrics and Zermelo navigation on Riemannian manifolds, Geom. Dedicata, 171 (2014), 119-148.
- 29. C. Yu, On dually flat (α, β)-metrics, J. Math. Anal. Appl. 412 (2014), 664-675.
- 30. Y. Yu, and Y. You, Projectively flat exponential Finsler metric, J. Zhejiang Univ. Sci.
A 7 (2006), 1068-1076.
|