تعداد نشریات | 27 |
تعداد شمارهها | 361 |
تعداد مقالات | 3,185 |
تعداد مشاهده مقاله | 4,690,994 |
تعداد دریافت فایل اصل مقاله | 3,204,073 |
Fuzzy soft k−ideals over semiring and fuzzy soft semiring homomorphism | ||
Journal of Hyperstructures | ||
دوره 4، شماره 2، اسفند 2015، صفحه 93-116 اصل مقاله (130.78 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22098/jhs.2015.2601 | ||
نویسندگان | ||
Marapureddy Murali Krishna Rao* 1؛ B. Venkateswarlu2 | ||
1Department of Mathematics, Sankethika Engineering College , Visakhapatnam, India | ||
2Department of Mathematics, GIT, GITAM University, Visakhapatnam- 530 045, Andhra Pradesh, India. | ||
چکیده | ||
In this paper, we introduce the notion of fuzzy soft semirings, fuzzy soft ideals, fuzzy soft k− ideals , k−fuzzy soft ideals over semirings and fuzzy soft semiring homomorphism. We study some of their algebraical properties and properties of homomorphic image of fuzzy soft semiring. | ||
کلیدواژهها | ||
fuzzy soft semiring؛ fuzzy soft ideal؛ fuzzy soft k−ideal over semiring؛ fuzzy soft semiring homomorphism | ||
مراجع | ||
[1] U. Acar, F. Koyuncu and B. Tanay, Soft sets and Soft rings, Comput. Math.Appli., 59 (2010), 3458–3463. [2] H. Aktas and N. Cagman, Soft sets and soft groups, Inform. Sci., 177 (2007),2726–2735. [3] F. Feng, Y. B. Jun and X. Zhao, Soft semirings, Comput. Math. Appli., 56 (2008), 2621–2628. [4] J. Ghosh, B. Dinda and T. K. Samanta, Fuzzy soft rings and Fuzzy soft ideals, Int.J. P. App.Sc.Tech. 2(2) (2011), 66–74. [5] M. Henriksen, Ideals in semirings with commutative addition, Amer. Math. Soc. Notices, 6 (1958), 321. [6] K. Iizuka, On the Jacobson radical of a semiring, Tohoku, Math. J., 11(2) (1959),409–421. [7] P. K. Maji, R. Biswas and A. R. Roy, Fuzzy soft sets, The Journal of Fuzzy Mathematics, 9(3) (2001), 589–602. [8] D. Molodtsov, Soft set theory-First results, Comput. Math. Appl., 37 (1999),19–37. [9] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512–517. [10] H. S. Vandiver, Note on a simple type of algebra in which cancellation law of addition does not hold, Bull. Amer. Math. Soc.(N.S.), 40 (1934), 914–920. [11] L. A. Zadeh, Fuzzy sets, Inform. control, 8 (1965), 338–353. | ||
آمار تعداد مشاهده مقاله: 47 تعداد دریافت فایل اصل مقاله: 48 |