تعداد نشریات | 27 |
تعداد شمارهها | 364 |
تعداد مقالات | 3,223 |
تعداد مشاهده مقاله | 4,742,315 |
تعداد دریافت فایل اصل مقاله | 3,238,901 |
On formal local homology modules | ||
Journal of Hyperstructures | ||
دوره 4، شماره 1، شهریور 2015، صفحه 11-19 اصل مقاله (103.74 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22098/jhs.2015.2594 | ||
نویسنده | ||
M.H. Bijan-Zadeh* | ||
Department of Mathematics, Payame Noor University P.O.BOX 19395-3697, Tehran, IRAN. | ||
چکیده | ||
Throughout R is a commutative Noetherian ring and a an ideal of R. In this paper we study formal homology modules of Artinian R-modules. We obtain an expression of the formal homology in terms of a certain local homology module. Also we consider their behavior with respect to the a-torsion functor, and exact sequences for various situations and related ideas. | ||
کلیدواژهها | ||
Local homology؛ Formal local homology | ||
مراجع | ||
[1] M. Asgharzadeh K. and Divaani-Aazar, Finiteness properties of formal local co-homology modules and Cohen-Macaulayness, Comm. Algebra, 39 (2011), 1082–1103. [2] N. Bourbaki, Algebre, Chap. X:Algebre homologique, Masson, Paris, 1980. [3] M. P. Brodman and R. Y. Sharp , Local cohomology, An algebraic introduction with geometric applications, Cambridge University Press, 1998. [4] N. T. Coung and T. T. Nam, The I-adic completion and local homology, J, Algebra, 149 (1992), 438–453. [5] M. Eghbali, On Artinianness of Formal Local cohomology, colocalization and coassociated primes, Math. Scand, 113 (2013), 5–19. [6] E. E. Enochs and O. M. G. Jenda , Relative homological Algebra, Walter De Gruyter, expositions in Mathematics Berline, NewYork, 2000. [7] A. Mafi, Results of formal local cohomology modules, Bull. Malays Math. Sci. Soc, 36 (2013), 173–177. [8] H. Matsumura, Commutative ring theory, Cambridge University Press, 1986. [9] A. Ooishi, Matlis duality and the width of a module, Hiroshima Math. J, 6 (1976), 573–587. [10] R. N. Roberts, Krull dimension for Artinian modules over quasi-local commuta-tive rings, Quart. J. Math Oxford, 26 (1975), 177–195. [11] J. J. Rotman, An introduction to homological Algebra, London Academic Press,1979. [12] P. Schenzel, Proregular sequences, local cohomology and completion, Math Scand, 92 (2003), 161–180. [13] P. Schenzel, On formal local cohomolgy and connectedness, Journal Of Algebra, 315 (2007), 894–923. [14] Z. Tang, Local homology theory Artinian module, Comm Algebra, 22 (1994),1675–1684. [15] C. A. Weibel, An introduction to homological Algebra, Cambridge University Press NewYork, 1994. | ||
آمار تعداد مشاهده مقاله: 44 تعداد دریافت فایل اصل مقاله: 50 |