تعداد نشریات | 27 |
تعداد شمارهها | 364 |
تعداد مقالات | 3,223 |
تعداد مشاهده مقاله | 4,741,275 |
تعداد دریافت فایل اصل مقاله | 3,238,584 |
Nonholonomic frames for Finsler space with deformed infinite series of (α,β) metric | ||
Journal of Hyperstructures | ||
دوره 11، شماره 1، شهریور 2022، صفحه 157-165 اصل مقاله (287.61 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22098/jhs.2023.2534 | ||
نویسندگان | ||
Brijesh Kumar Tripathi1؛ V. K. Chaubey* 2 | ||
1Department of Mathematics, L. D. College of Engineering, Ahmedabad, Gujarat-380015, India. | ||
2Department of Applied Sciences, Buddha Institute of Technology, GIDA Gorakhpur, U.P., 273209, INDIA | ||
چکیده | ||
The purpose of present paper to determine the Finsler spaces due to deformation of special Finsler (α, β) -metric. Consequently, we obtained the non-holonomic frame with the help of α2=aij(x)yiyj, one form metric β=bi(x)yi and infinite series of (α, β) metric such as the forms I. ( β4 /(β-α )2 ) + α2 =F12+F22 i.e. sum of the square of infinite series of (α, β) -metric and square of Riemannian metric II. ( β4 /(β-α )2 ) + β2 =F12+F32 i.e. sum of the square of infinite series of (α, β) -metric and square of 1-form metric. | ||
کلیدواژهها | ||
Riemannian metric؛ One form metric؛ Infinite series of $ (\alpha؛ \beta) $-metric؛ Nonholonomic Finsler frame | ||
مراجع | ||
1] Brijesh Kumar Tripathi, and V. K. Chaubey, Nonholonomic frames for Finsler space with deformed Matsumoto metric, TWMS J. App. and Eng. Math., 7(2), (2017), 337-342. [2] Brijesh Kumar Tripathi , V. K. Chaubey and R. B. Tiwari, Nonholonomic frames for Finsler space with generalized Kropina metric, International Journal of Pure and Applied Mathematics, 108 (4), (2016) 921-928. [3] Ioan Bucataru and Radu Miron, Finsler-Lagrange Geometry: Applications to dynamical systems, Editura Academiei Romane, https :==www:math:uaic:ro= bucataru=working=metricg:pdf (2007). [4] I.Bucataru, Nonholonomic frames on Finsler geometry,Balkan Journal of Geometry and its Applications, 7, (1), (2002), 13-27. [5] I Y Lee and H. S. Park , Finsler spaces with in nite series ( ; )-metric, J.Korean Math. Society,41 (3), (2004), 567-589. [6] M.Matsumoto , Theory of Finsler spaces with ( ; )-metric, Rep. Math. Phys., 31, (1992), 43-83. [7] P.L.Antonelli and I.Bucataru, Finsler connections in anholonomic geometry of a Kropina space, Nonlinear Studies, 8 (1), (2001), 171-184. [8] P.R.Holland, Electromagnetism, Particles and Anholonomy, Physics Letters, 91 (6), (1982), 275-278. [9] R.G. Beil, Comparison of uni ed eld theories, Tensor N.S., 56 (1995), 175{183. [10] R.G. Beil, Finsler and Kaluza-Klein Gauge Theories, Intern. J. Theor. Phys., 32,6 (1993) 1021-1031. [11] R.Miron and M.Anastasiei, The geometry of Lagrange spaces: Theory and Applications, Kluwer Acad. Publ., FTPH, no.59, (1994). [12] R.S.Ingarden, On Physical interpretations of Finsler and Kawaguchi spaces,Tensor N.S., 46, (1987), 354-360. [13] S.K.Narasimhamurthy,Y. Kumar Mallikarjun, and A. R. Kavyashree, Nonholonomic Frames For Finsler Space With Special (α, β )-metric, International Journal of Scientic and Research Publications, 4(1), (2014), 1-7. | ||
آمار تعداد مشاهده مقاله: 53 تعداد دریافت فایل اصل مقاله: 90 |