- 1. P.L. Antonelli, R.S. Ingarden and M. Matsumoto, The theory of sprays and Finsler
spaces with applications in physics and biology. FTPH 58, Kluwer Academic Publishers, 1993.
- 2. M. Amini, On conformally flat cubic (α, β)-metrics, Journal of Finsler Geometry and its
Applications, 2(1) (2021), 75-85.
- 3. G.S. Asanov, Finslerian metric functions over product R × M and their potential applications, Rep. Math. Phys. 41(1998), 117-132.
- 4. G. Chen and X. Cheng, An important class of conformally flat weak Einstein Finsler
metrics, Int. J. Math. 24(1) (2013), 1350003 (15 pages).
- 5. G. Chen, Q. He and Z. Shen, On conformally flat (α, β)-metrics with constant flag
curvature, Publ. Math. Debrecen, 86 (2015), 351-363.
- 6. X. Cheng, H. Li and Y. Zou, On conformally flat (α, β)-metrics with relatively isotropic
mean Landsberg curvature, Publ. Math. Debrecen, 85 (2014) 131-144.
- 7. X. Cheng, H. Wang and M. Wang, (α, β)-metrics with relatively isotropic mean Landsberg
curvature, Publ. Math. Debrecen, 72 (2008), 475-485.
- 8. S. S. Chern and Z. Shen, Riemann-Finsler Geometry, World Scientiflc, Singapore, 2005.
- 9. M. Hashiguchi, S. H¯oj¯o, and M. Matsumoto, Landsberg spaces of dimension two with
(α, β)-metric, Tensor, N. S. 57 (1996), 145-153.
- 10. Y. Ichijyo and M. Hashuiguchi On the condition that a Randers space be conformally
flat, Rep. Fac. Sci. Kagoshima Univ. 22 (1989), 7-14.
- 11. L. Kang, On conformally flat Randers metrics, Sci. Sin. Math. 41 (2011), 439-446 (in
Chinese).
- 12. M. S. Knebelman, Conformal geometry of generalised metric spaces, Proc. Natl. Acad.
Sci. USA 15 (1929), 376-379.
- 13. V.K. Kropina, On projective two-dimensional Finsler spaces with a special metric, Trudy
Sem. Vektor Tenzor Anal. 11 (1961), 277-292.(in Russian).
- 14. B. Li and Z. Shen, On a class of weak Landsberg metrics, Science in China Series A, 50
(2007), 75-85.
- 15. M. Matsumoto, Projective flat Finsler spaces with (α, β)-metric. Rep Math Phys 30
(1991), 15-20.
- 16. L-I. Piscoran and M. Amini, On conformally flat square-root (α, β)-metrics, Journal of
Finsler Geometry and its Applications, 2(2) (2021), 89-102.
- 17. H. Rund, The Differential Geometry of Finsler Spaces, Springer-Verlag, Berlin, 1959.
- 18. Z. Shen On projectively flat (α, β)-metrics. Canad Math Bull 52 (2009), 132-144.
- 19. A. Tayebi and M. Amini, Conformally flat 4-th root (α, β)-metrics with relatively
isotropic mean Landsberg curvature, Math. Analysis. Convex. Optimization, 1(2) (2020), 25-34.
- 20. A. Tayebi, M. Amini, On Conformally Flat Exponential (α, β)-Metrics, Proc. Natl. Acad.
Sci., India, Sect. A Phys. Sci. 92 (2022), 353-365.
- 21. A. Tayebi and B. Najafi, On m-th root metrics with special curvature properties, C. R.
Acad. Sci. Paris, Ser. I. 349 (2011), 691-693.
- 22. A. Tayebi and M. Razgordani, On conformally flat fourth root (α, β)-metrics, Differential
Geom. Appl. 62 (2019) 253-266.
- 23. A. Tayebi and T. Tabatabeifar Unicorn metrics with almost vanishing H- and Ncurvatures. Turkish J Math 41 (2017), 998-1008.
- 24. Q. Xia, On locally dually flat (α, β)-metrics, Differential Geom. Appl. 29 (2011), 233-243.
- 25. Y. Yu, and Y. You, Projectively flat exponential Finsler metric. J Zhejiang Univ Sci A
7 (2006), 1068-1076.
- 26. M.G. Yuan , X. Cheng On conformally flat (α, β)-metrics with special curvature properties, Acta Math. Sinica English Ser. 31 (2015), 879-892.
|