Journal of Finsler Geometry and its Applications
Vol. 4, No. 2 (2023), pp 1-21
https://doi.org/10.22098 /jfga.2023.13513.1094

On a class of conformally flat («, 5)-metrics with special
curvature properties

Mosayeb Zohrehvand®

%Department of Mathematical Sciences and Statistic, Malayer University,
Malayer, Iran.

E-mail: m.zohrehvand@malayeru.ac.ir

Abstract. This paper is devoted to study of a class of conformally flat (a, 8)-
metrics that have of the form F' = aexp(2s)/s, where s := /a. They are
called Kropina change of exponential («, 3)-metrics. We prove that if F' has
relatively isotropic mean Landsberg curvature or almost vanishing =-curvature
then it is a Riemannian metric or a locally Minkowski metric. Also, we prove
that, if F' be a weak Einstein metric, then it is either a Riemannian metric or
a locally Minkowski metric.
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1. Introduction

The important and interesting applications of conformal geometry in phys-
ical theories have caused that this field has more studying and consideration.
For example, in general relativity the light-like geodesics are invariant under
the conformal relation between pseudo-Riemannian metrics. Also, the Weyl
theorem states that by studying the conformal and projective properties of a
Finsler metric, the properties of metric can be determined uniquely[12, 17].
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Two Finsler metrics F and F on a differentiable manifold M are said to be
conformally related if F' = e"(*) ' where (z) is a scalar function on M and is
called the conformal factor. In the cace of F is a locally Minkowski metric, we
say that F' is a conformally flat metric.

One of the interesting problems in conformal geometry is obtaining the local
metric structure of conformally flat Finsler metrics [3]. But, in general case,
this is a difficult problem. Thus, the researchers considered special classes of
Finsler metrics. Ichijyo and Hashiguchi gave a condition that a Randers metric
is conformally flat [10]. Randers metrics are contained in an important class
of Finsler metric i.e. (a, #)-metrics which have many applications in physics,
biology and etc (see [1]).

The Finsler metric F' = a¢(s), s := f/a is an («, f)-metric where o :=
Vaijyiyl is a Riemannian metric, 8 := b;(z)y’ is a 1-form and ¢(s) is a C>
function that satisfied a certain inequality [15]. (a, 8)-metrics have been widely

studied because they are computable and also, the researches on («, 8)-metrics
enrich Finsler geometry and suggested many references for further studies.

The study of conformally flat («, §)-metrics with special curvature properties
is an interesting field. L. Kang considered conformally flat Randers metrics of
scalar flag curvature and proved that they are projectively flat and then classi-
fied such metrics completely [11]. Conformally flat (o, 8)-metrics with isotropic
S-curvature are considered in [1] and it is shown that they are Riemannian or
locally Minkowski metric and also conformally flat weak Einstein (v, 8)-metrics
of polynomial type are classified. In [0] it is proved that any non-Riemannian
conformally flat weakly Landsberg (a, §)-metric must be a locally Minkowski
metric. Conformally flat («, 8)-metrics with constant flag curvature are con-
sidered by Chen et al. and they showed that the such metrics are either locally
Minkowski or Riemannian metrics [5]. Tayebi and Razgordani studied confor-
mally flat weak Einstein fourth root («, 8)-metrics and proved that they were
also either locally Minkowskian or Riemannian [22]. For more references see
[ ’ ) J ]

The Kropina metric F' = o2/ is an («, 8)-metric which firstly was investi-
gated by V.K. Kropina [13]. This metric appears when the general dynamical
system represented by a Lagrangian function [3]. Due to this, for any Finsler
metric F', one can consider the transformation

2
F(z,y) = F(x,y) := %

The transformation (1.1) is called the Kropina change of Finsler metric F,
because F is reduced to the Kropina metric, when F reduced to a Riemannian

(1.1)

metric o.
A class of («, 8)-metrics that deserve more attention are exponential («, 3)-
metrics. They are of the form F' = aexp(s), s := [/«, and have studied by
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many authors [18, 20, 24, 25]. This class of metrics is interesting, because the
exponential metric

s q /b2 — 2
F=aexp(| ——=—=dt),
o 1+ qtvb2—1t2
is an almost regular unicorn metric, where b := ||3||, and ¢ is a constant. A
unicorn metric is a Landsberg metric that is not Berwaldian [23]. Tayebi and

Amini considered conformally flat exponential («, 5)-metric with some special
curvature properties [20].

This paper is devoted to study of the conformally flat Kropina change of
exponential («, 8)-metric i.e.

F = aexp(2s)/s, s:= g.
For a Finsler metric F', we have the basic tensors, fundamental tensor g,
and Cartan tortion C. By taking horizontal covariant derivative of Cartan
torsion along the geodesics we obtain the tensor field L that is called Landsberg
curvature. The trace of C and L are called the mean Cartan torsion I and
the mean Landsberg curvature J, respectively. A Finsler metric F' is called
relatively isotropic mean Landsberg curvature if there exists a scalar function
¢ = ¢(x) on M such that J+cF1I = 0. In this paper, we consider the conformally
flat Kropina change of exponential («, 8)-metric that has relatively isotropic
mean Landsberg curvature and prove the following.

Theorem 1.1. Let F' = aexp(2s)/s, s := /a be the conformally flat (c, B)-
metric on a manifold M of dimension n > 3. Suppose that F' has relatively
isotropic mean Landsberg curvature

J+¢(x)FI=0,

where ¢ = c(x) is a scalar function on M. Then F reduces to a Riemannian
metric or a locally Minkowski metric.

For an n-dimensional Finsler manifold (M, F), Z-curvature & = Z;dz’ is
a non-Riemannian quantity that is defined by the non-Riemannian quantity
S-curvature S as follows:

- . m
=g = S.i;my - S:,i7

.9

where ”;” and ”.” denote the horizontal and vertical covariant derivatives with
respect to the Berwald connection of F', respectively. Finsler manifold (M, F)
is said to be of almost vanishing =-curvature if

0

g, = —(n+1)F2(F>yi, (1.2)

where 6 := t;(z)y" is a 1-form on M. In this paper, firstly, the Kropina change
of exponential («, 8)-metric with almost vanishing =-curvature are considered
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and prove that it has vanishing Z=-curvature. Then, we prove the following
theorem.

Theorem 1.2. Let F = aexp(2s)/s, s := /a be the conformally flat (c, B)-
metric on a manifold M of dimension n > 3. Suppose that F has almost
vanishing =-curvature, then F' is a Riemannian metric or a locally Minkowski
metric.

A weak Einstein metric is a Finsler metric F' on an n-dimensional manifold
M, that the Ricci curvature Ric satisfies

Ric = (n—l)(%—i—a)Fz, (1.3)
for a scalar function ¢ := o(z) and a 1-form 6 := t;(x)y* on M. If § = 0,
then F is called Einstein metric, in this case we have Ric = (n — 1)oF?.
If Ric = 0, then F is called Ricci flat. In this paper we study the weak
Einstein Kropina change of exponential («, 8)-metrics. At first, we prove that
every weak Einstein Kropina change of exponential («, 8)-metric is a Ricci-flat
metric. Then, we prove the following theorem.

Theorem 1.3. Let F = aexp(2s)/s, s := B/« be the conformally flat («, 5)-
metric on a manifold M of dimensionn > 3. Suppose that F is a weak Finstein
metric, then F is either a Riemannian metric or a locally Minkowski metric.

2. Preliminaries

Let F' = F(z,y) be a Finsler metric on an n-dimensional differentiable mani-
fold M and TMy := |, ¢ ps T M —{0} the slit tangent bundle. The fundamental
tensor (g,) = (g:j(z,y)) of F' is a quadratic form on T, M that is defined

1
9ij (l’, y) = 5 [Fz]wyﬂ (QC, y)
A curve = z*(t) on Finsler space (M, F) is called geodesic if satisfies in the
following system of ODEs:

RO ) dzx

e + G'(z, E) =0,
where G = G%(z,y) are called the geodesic coefficients of F' and defined by
. 1 .
G = 20" [Py = [Ft }.
The Riemann curvature of R := Ri da* 821, is defined by

2 = 2(Gl)£k — (Gi)_,l;jykyj + 2Gj(Gi)yjyk — (Gz)y] (G‘])yk (21)

The trace of the Riemann curvature is called the Ricci curvature Ric and is
defined by

Ric = R
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In Finsler geometry, there are some geometric quantities that are vanishing
for Riemannian metrics and are called non-Riemannian quantities. The Cartan
torsion C is a symmetric trilinear form C := Cijkdxi ®da?d @ dz® on TM, that
is defined as follow ) L9

o 2 _ Gij
Cijk: — Z[F }yiyjyk - 5 8yk .

One can see that F' is a Riemannian metric if and only if C = 0. Thus it is a

non-Riemannian quantity.
The mean Cartan torsion of F' is the tensor field I := I;dz?, that is defined
by
I; == gjkCijk~

Furtheremore, one can see that
0
I, = oy [ln\/det(gjk)].

The horizontal covariant derivative of Cartan torsion along the geodesics
define the tensor field L := Lijkdmi ® dz? ® dx* on slit tangent bundle T M,
that is called the Landsberg curvature of F'. Thus L;;; := Cijx;my™, where
7.7 denoted the horizontal covariant derivative with respect to the Berwald
connection of F. Also, the Landsberg curvature can be expressed as following

1
Lk = —§FFym (G™]yigigyh- (2.2)
A Finsler metric F is called the Landsberg metric if L = 0.
The mean Landsberg curvature J := J;dz® is a non-Riemannian quantity

that is obtained by horizontal covariant derivative of the mean Cartan torsion
I along the geodesics of F. Thus

Ji = Limy™. (2.3)
Also, the mean Landsberg curvature J can be obtained as following
Ji = ¢"* Lijp,.
A Finsler metric F is called weak Landsberg metric if J = 0.
A Finsler metric F is called of relatively isotropic mean Landsberg curvature

if J/I, the relative growth rate of the mean Cartan torsion along geodesics of
F be isotropic, i.e. there exists a scalar function ¢ = ¢(z) on M such that

J+cFI=0.

For an n-dimensional Finsler manifold (M, F'), the Busemann-Hausdorff vol-
ume form dVp = op(z)dz’...dx™ is defined by

B"(1) )
vol{y' e R|F(yi 2 < 1)}

op(z) = Vol(
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The S-curvature S(y) can be defined by
oG! .0
S(y) := - — oy —
(y) oy Y ow

where y € T, M—{0}. From the S-curvature one can obtain the non-Riemaniann

[1nap(:c)],

quantity Z-curvature E := Z;dz’ as follows:

Ei = Sl7mym — S;i7
where ”.” and ”;” denote the vertical and horizontal covariant derivative with
respect to the Berwald connection of F, respectively.

A Finsler metric F is an (a, §)-metric if F' = ad(s), s:= 8/a, where a =

Vaij(z)y'yd is a Riemannian metric, 8 = b;(z)y’ is a 1-form with ||8,]| < bo,
x € M and ¢(s) is a positive C*° function on (—bg, by) satisfying

B(s) — s (s) + (2 — s2)¢ (s) >0, |s| <b< bp. (2.4)

In this case, the metric F' = ad(s) is a positive definite Finsler metric [3]. The
fundamental tensor F' = ag(s) is given by

gij = paij + pobib; + p1(bjay + bjoy) + pacaj,
where a; := oflaijyj, and
p = (¢ — 54, po = 99" +¢'¢/,
pri= —s(00" +&'P) + 68, pai=s{s(9d” +d'd) — 8¢}

One can see that

g7 = p~Ha" — 10’0 —nY'Y}, (2.5)
where b := a"b; and
) P2 2 2
= == Y°:.=1 b
N iy M + (A +€)s + Aeb”,
T , €—0s 01
Y':=Z 4N A= ==
@ A, 14§62’ ¢ 0o’
5= po — €2p2 - g
' p T 14602

Let
1 1
rij = 5 (bigj +b510), sij = 5 (bigg = bjp)
where b;|; denote the coefficients of the covariant derivative of 8 with respect
to a. We denote
rij = aimrm]—, ro0 1= rijyiyj, ri = 0",

- i - m i o._ im
To =Ty, Ti0 ‘= TimY §; = a4 Smy,

P m . pm O 7
5i0 = Simy" ", 55 = b" 54, 80 1= 83y’



On a Class of Conformally Flat (a, 8)-Metrics 7

The geodesic coefficients G* of an (a, )-metric F' = ag(s) are given by

G = Gl +aQs’y + {—2Qaso + roo}{\pbi + @orlyi}, (2.6)
where G°, is the geodesic coefficients of a and
__ ¢
T
. 00 = 566" +¢'9)
29[¢ - s¢' + (07— 5%)¢"]
¢//
¥ =

2[¢ — 5¢' + (b* = s%)¢"]

For more details, see [3].

3. Kropina change of exponential («, 5)-metrics

In this paper we focus on the Kropina change of exponential («, 5)-metric.
This is of the form
F = aexp(2s)/s, s:= /.
Since ¢(s) = exp(2s)/s must be positive function, thus s > 0. One can see that
F' is not a regular («, 8)-metric, but we have the following lemma.

Lemma 3.1. F = aexp(2s)/s, s:= B/a, is a (non-regular) Finsler metric, if
and only if 0 < ||Bella < 1

Proof. Let F' = avexp(2s)/s, s := /a, is a Finsler metric, then from (2.4) we

have
53 + 2252 — 2b%s + b2 — 2s*
<3
For s = b, we get 0 < b < 1. Thus 0 < ||Bz|la < 1. The convers is easy to
prove. O

> 0.

3.1. Proof of Theorem 1.1. Now, we are going to prove Theorem 1.1. In [7]
the mean Cartan torsion of an («, §)-metric are computed.

Lemma 3.2. ([7])For an («, B8)-metric F = ap(s), s = 8/a, the mean Cartan
torsion is given by
fi= 5 5 (6= 56, (31)
where
A=1+5Q+ (- s°)Q,
® = —(nA+1+5Q)(Q —sQ') — (1 - 5*)(1 +sQ)Q",
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It is well known that, by Deicke’s theorem, F' is a Riemannian metric if and
only if I = 0. Thus from (3.1) we have the following.

Lemma 3.3. An (a, §)-metric F = a¢(s), s := 8/a is a Riemannian metric
if and only if ® = 0.

From (2.3) and (3.1), one can see that the mean Landsberg curvature of an
(a, B)-metric F = a¢(s), s = B/, is given by

1 203 1®
J; :M{Z)Qi“s?[A+(n+l)(Q_sQ/) (s0 +10)h;

2

P
+ Uy + S*j| (’I‘oo — QOéQSO)hj

ol
b2 — 52 A
+a [ —a?Q'soh; + aQ(a?s; — y;js0) + a*Asjo

+ 042(7"]'0 —2aQs;) — (roo — QaQso)yJ} i}, (3.2)
where y; = a;;y". For more details see [7, 14]. From (3.1) and (3.2), we
obtained that

Ji+c(x)FI; = _m{lA{b}.ﬁs? [% +(n+1)(Q — SQ’)} (so +10)h;
+% [\Ill + 5%} (roo — 2aQso)h; + [ - OéQleohj

+aQ(a?s; — yjs0) + a*Asjo + a*(rjo — 2aQs;)

—(roo — QOZQSO)y]}% + c(z)oz4q)(¢ — SQS’)hj}. (3.3)

Since we study conformally flat («, §)-metrics, we need the following Lemma.

Lemma 3.4. ([1]) Let F' = a¢(s), s = B/a, be an («, B)-metric. Then F is
locally Minkowski metric if and only if « is flat and B is parallel with respect
to a.

Now, let F' = a¢(s), s = 8/a, is a conformally flat Finsler metric, it means
that, there exists a Minkowski metric F such that F = e"(®)F, where (z)
is a scalar function on the manifold. Since F' = a¢(8/«), we obtain that
F = a¢(B/a) is an (o, B)-metric, where

a=e"a, [f=e'p, (3.4)
From (3.4), we have

&ij = 62}{(1)@”, Bl = €K(m)bi.
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The Christoffel symbols T, of o and the Christoffel symbols %, of @ are
related by

M i i i i
Ui =Ty + 0kk + Ok — K'ajk,

where k; := % and k' := a ;. Thus, we obtain

7 al;l T 1 K r

bl”] = % — bSij =e (blU — bjlii + b,k aij). (35)
where l;i” ; denote the coefficients of the covariant derivative of B with respect

to a.
Scince F is a Minkowski metric, from Lemma (3.4), we have EiHj = 0. Thus

bijj = bjki — brk"a;. (3.6)
From (3.6) we obtain
1 - 1., 1,
rij = 5 (kibj + #5bi) — brk"aij, rj == Rb; + 5Rsb% (37)
1 1
rio = glril + (rry Vo] = meblyis sy = 5 (Ribs = kb)), (3.8)
1 1
sj = 5 (k)b — k%, sin = 3lwil = (rry )bl (3.9)
Further, we have
roo = (k,y")B — (keb")a?, (3.10)
1 1
ro = 5 (key")b* = S (5rb")B, (3.11)
1 1
S0 = E(Krbr)ﬁ - §(Hryr)b2- (3.12)

From (3.11) and (3.12), we see that a conformally flat («, 8)-metric satisfying
ro + g = 0 which means that the 1-form 8 has constant length with respect to
a.

In order to simplify the computations, we take an orthonormal basis at any
point = with respect to a such that o = /> ., (y%)? and 8 = by', where
b :=||Bz||la- Then, we take the following coordinate transformation

¥ (sut) — (y),

in T, M, that is

1_ S ~ A_ A
Y= bQ—SQa’ y P =u®, 2<A<n, (3.13)
where & = /> ,(u?)2. In this case, we have
b b
a=——a, f=-——a. (3.14)

ViZ = 8204, b2 — g2
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Then, by (3.6)-(3.14) one can obtain

bskoa 1
T00 = —bli15é2 + \/%, o= —So = §b2’?‘307 (315)
1 kabsa 1, _
A= 5 e (bk1)ua, 7110 = 5 bk, (3.16)
1
s4= —imbz, 51 =0, (3.17)
1 kabsa 1 _
SA0 = iﬁ, $10 = 751)"{05 (318)
b2 _ o2 2
hAz—%, hlzb—%. (3.19)

where R 1= kqu?.

Proof of Theorem 1.1: Since l;i”j =0, we have that b = constant. If b =0,
then F = ¢F(®) & is a Riemannian metric. Now, let ' not be a Riemannian met-
ric. Suppose that F' is a conformally flat («, 8)-metric with relatively isotropic
mean Landsberg curvature. By (3.3) and r + so = 0, we obtain

a? (0]
a2 {\Ill + SZ}(TOO —2aQso)hj + a{ — aQQ’sohj
+ OéQ(OéQSj —y;S0) + a2Asj0 + 042(7“j0 —2aQ)s;)
[
— (roo — QOzQso)yj}K —c(z)a*®(p — s¢')hj = 0. (3.20)

Putting j = 1 in (3.20), we have

2

P
a p {\1’1 + SK}(TOO — 2@@80)]11 + Oé{ — OéQQISO]h
— 92

b2
+aQ(a’s1 — y1s0) + a?Asig + (10 — 20Qs1)
P
— (o0 — ZaQso)yl}E — c(x)a4<I>(¢ —s¢')hy = 0. (3.21)
Substituting (3.14)-(3.19) into (3.21) and then multiplying the resulting equa-
tion with —2A(b? — 52)%/2 we have
b2643{2\/62 — $2A[be® (¢ — s¢) + Uik @ — Ro [B*RQ' (b — s7)

+ ®b*(sQ + 1) + ADY* — 20, A(BQ + )] } =0. (3.22)

From (3.22), we get
Albe®(p — s¢') + U1k1] =0, (3.23)
Ro[b?PQ(b* — s°) + ®b*(sQ + 1) — ADD* — 201 A(B°Q +5)] =0.  (3.24)
One can see that (3.24) simplify as follow
Ro[b?@(Q'(0* — s*) +sQ + 1 — A) — 20, A(b’Q +5)] =0 (3.25)
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substituting A = Q'(b* — s%) + sQ + 1, in (3.25), we get
U AB?Q + s)ko = 0. (3.26)
Now let j = A in (3.20), thus we have

a2

®
b2 _ 2 [\III + SZ] (ro0 — 2aQs0)ha + a[ — a?Q’soh 4

+aQ(a?ss —uasg) + a?Asag + a?(ra0 — 20Qs4)
®
— (roo — 2aQso)ua] N c(x)at®(p — s¢')ha = 0. (3.27)
Putting (3.14)-(3.19) into (3.27) and using the same method used in the case
of 7 =1 and from A = Q'(b? — s%) + sQ + 1, we get
(SA + s+ D2Q)*Prac® — [(sA + 5+ b?Q)b*D
+25(b*°Q + 5) U1 A]Roua = 0, (3.28)
sV b2 — s2[®bc(p — 5¢") + W1k1]Aug = 0. (3.29)
One can easily see that (3.29) is equivalent to (3.23). Also, multiplying (3.28)
with u implies that
s(b?Q + 5)¥1 ARpa? = 0. (3.30)
It is obvious that (3.30) is equivalent to (3.26). Anyway, we showed that a con-
formally flat («, 5)-metric with relatively isotropic mean Landsberg curvature
satisfly (3.23) and (3.26).
If b2Q + s = 0, then we obtain ¢ = kv/b2 — s2, where k is a constant. This
is a contradiction with the assumption that ¢ = exp(2s)/s. Thus b*Q + s # 0.
Then from (3.26) we conclude that ¥y =0 or k4 = 0.
If ¥; = 0, then using (3.23) we obtain that ® = 0, and from Lemma 3.3, we
see that F'is a Riemannian metric.

If U1 # 0, then k4 = 0. In this case, we prove that k1 = 0.
Simplifying (3.23) and multiplying it by A%, we get

{0+ (17— 2))A - g(bQ )80 by - bAB(o— s) = 0. (3.31)

Putting ¢ = exp(2s)/s into (3.31) and using maple program, we can obtain the
following

I€186(C10810 +- 4+ o)+ 26b62s(€14514 +---+&) =0, (3.32)

where ¢; (0 <4 < 10) and §; (0 < j < 14) are polynomials of b. From (3.32),
we get

K1(Cros' + -+ Go) = 0, (3.33)
2cb(€148™ 4+ 4+ &) = 0. (3.34)
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From (3.33), (3.34) and that (y = 2(2 — n)b® and & = 4(1 + n)b%, we conclude
that
k1 =0, c¢=0.

Thus k1 = k4 = 0. It follows that x = constant, which means that F' is a
locally Minkowski metric. This completes the proof. ([

4. Proof of Theorem 1.2

In this section, firstly we study the Kropina change of exponential (a, 3)-
metric with almost vanishing Z-curvature. From (2.6), the spray coefficients of
a («, B)-metric F' = a¢(s), s = [/, are rewritten as follow

G'=G +H, (4.1)
where
. 1 _ . .
H' := —{AOy" + « AUV + oezQs’O},
@
A :=rgg — 2aQ)sg.

We denote H := %I;—;n. By a simple computation, one can see that

H :é{(n +1)A0 + aQ'sp + AV (b* — 5?)}
+ 2 [rg — sQsp — Q' (b* — s%)s0].

Let IT := %ﬁ—:. By definition =-curvature of a Finsler metric can be expressed

as follows

Ei = Hyiwmym - sz‘ - 2Hyiyme. (4.2)
Substituting (4.1) in (4.2), we get

Ei=Hjmy" — Hj —2H ;mH™, (4.3)

where

”|” denotes the horizontal covariant derivative with respect to . By
compute each terms of the right hand side of (4.3), one can obtaine a formula
for E-curvature of an («, §)-metric. For details of computaition see [20].

Now, we can prove the following lemma.

Lemma 4.1. Let F = aexp(2s)/s,s := B/a be an («, B)-metric on an n-
dimensional manifold M (n > 3) with almost vanishing =-curvature. Then F
has vanishing =-curvature.

Proof. Let F' = a¢(s), s := g has almost vanishing =Z-curvature, thus there
exists a 1-form 6 := t;(z)y* on M, such that
0 (n+1)

== —(n+ 1)F2(F)yi = [t — gby; — ¢'b(ab; — sy)].  (44)
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Putting ¢(s) = aexp(2s)/s, s = f/a and (4.3) in (4.4) and using Maple
program, we obtain

Ajpga® 4+ Aot Agg = )\[05(042ti—Qyi)—(Qﬁ—a)o(OéZbi—ﬂyi)] e*, (4.5)
where A;os, ..., A are polynomials of s and
A= 208[B(a — B)(8* - 2%a%) + bPa* — 5] (a — B)*.
If A =0, then
Bla— B)(B> — 20%a®) + Va* — B* = 0. (4.6)
From (4.6), we obtain
B2(20252 + aff — 267) = a¥(26 — ),

this means that o contains 3 as a factor, which is impossible, because n > 3,

(see [9]).
Thus, from (4.5) we have
af(a®t; — 0y;) — (28 — a)0(a’b; — By;) = 0. (4.7)
Contracting (4.7) with b?, yields
(Bt:ib" + 0b*)a® — 206% = 0, (4.8)
208(b*a* — 3?) = 0. (4.9)

Note that b2a? — 5% # 0, thus from (4.9), it follows that § = 0. Therefore
==0. O

In order to prove Theorem 1.2, we need the following Lemma.

Lemma 4.2. ([26]) Let F and F be two conformally related Finsler metrics
on a manifold M with conformal factor & = k(x). Then = and E-curvatures

satisfy
éi - Ez + Bz,mym - B;i + 2QT(SZ7‘ + B.i.r)7
where Kk; := aa;iv K" = ¢k, B = F2k"I,, Q" := F;M and ”;” denotes the

horizontal covariant derivative with respect to the Berwald connection of F'.

Proof of Theorem 1.2: Let F' = aexp(2s)/s,s := B/a be a Minkowski
metric and F = ¢"®) F is of almost vanishing S-curvature. It follows that a
ij = 0, ie. b= constant. If b = 0, then
F = ¢"®)q is a Riemannian metric. Thus we suppose that b # 0 and show
that F is a Minkowski metric. Since F' is Minkowski metric by Lemmas 4.1
and 4.2 we have

has zero sectional curvature and b;
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Now we can compute each term of equation (4.10) (see [26]).We denote

. . . . 9

K= gk, K = a" kg, [ ="K, Ko = Kyt Kig = aTga:j’
. P Ko

fii=V"kriy fo = fiy's Koi = ke, Koo i= Kiy'y’, X = o T

K00 ox Koi  KooYi
X0 == — + Afo, X.i =5, Xoi =— = =+ N fos.i,

@ y «@ as

ay” 1
Vii= G (i rg = T =Y s = 2 (bia— sy,

i ® /

yz*azryab =a br; ¢1_72A¢(¢7 ¢)

One can see that

T 1 r hr r r r pl r 1 r

k==, I, = ®1— = ®15,, [, = Pys5,K", R = _72< S+ 7(.1‘7
p ! P P
] /
p P 1
Kip = —(;2) ("s.isk— ?( Besit( sin+ CZ-S.k) + ;cz,k,
L =®5:5:+ P15,
Lok = ®Vs,sisk + PU(s.riSk + Skrsi+ Sikse) + PiSrik,
Note that F' is a Minkowski metric, thus the horizontal covariant derivative

with respect to F' reduces to common derivative with respect to the position
variable x. Thus

Bimy™ = 5pm? = Ey; + F?(Ey + Es;), (4.11)
where
2 K" m (I) 2 2
Eyi:=(F%),; o I, = 2g;;9° s {(foa — skoo) — (Tfo + nAx0)(b* — s*)a}.
Ok ' O o
Eyi - = aT%ymlr S 1{fo 1—7b%) — UXOYTbr}S.H-szT;{HOO—TfOSOé
—nxoY "y, }si — pfa{(T’fon +1'x0Y "br)s.i + nY " brx0i + Mx0Y by }
5@1 / ’ r r r
?{(T foas — ' x0Y " yr)s.i +0Y yrxoi + nX0Y S Yr |-
Ok" 5K00 Joyi + Koobi  sko;
Ezi:=—y"l.; = { —— )i+ (- = —
i D/ )
+ 3s K2?4y )} - L});o{ L(Y"ba — YTy, )54 — 071 [sYrairon

Tfo

+ (}/’rbfyZ + Yryrbi)Oé — 3YTyryz] } - 0

/
P12 _ g2 ;
{a( S)S'

—i [332%— — b2y — 2$bia2)] }
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and

ok" 29 i

B;i::F2 K,Ir: l{fi—SKO —Tfi(b2—82)
ox? pa @
_nA®2—s2xAﬁ-+”m)}. (4.12)
o
Also, we have
2Q"B.i., = F?{2x"I,k; + 2E4(F?) ; 4 260 Es; + F*Fg; }, (4.13)
where
q) /
Byt= (500" = —{ = 2 (¢s.) 4 i |
p p
1 .
PR 0P}
(0] / 1
E5i L= (KTIT').i = 71{ - gCTS.T'S.i + CZST} + 7{(1’/1<r3.7'5.i + (I)ICTS.r.i}v

p L p p
and

Eg; : = Ee1; + Eg2; + Eg3i + Foais
where

@ / /
Eg15: = —/‘E_Ti,kfrﬂk = _ﬁ{(%)/(crs.r)zs.i + %(Ckﬂs,rs,i

1
= ot Fondling) = Csact ],
/

Ewi:nwyﬁ:—%{ﬂ@%ﬁz+®0@mm%¢

1
+ ;{éﬁgkskgsr + (I)lckc_ris.k.r}a

o
5

1 ! v rk k ~r
+?{(I)1C.kc Sr8i+ (¢ C.ks.r.i}a

Eogi : = Wl = =5 {@1(C7s,) %5 4+ @16 5405, |

1
Egui: =Lk k¥ = pj{q’/f(crs.r)%.i + D1 (7 s s
+2¢"s.,C s k) + q’lCerS.nk.i}
It is easy to see that

9i;y" =(p + sp1 + p2)yi + (spo + p1)abi,
MM+%m+mw 38Yrys

Sior = — a3 a2 Oé4

)
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1 3s
Sirk = — g{aikbr + aprb; + aribi} + g{ariyk + ikYr + Qrryi

3 155
+ —A{bryiyn + biyryr + OkyrYi} — —5 YiYrYhs
« «

Kj KoY
X.i == - 31 + )\/fs.ia
(0% «

1
X.ik =— 5{/’%% + KrYi + Kok}
Y7b, =s + \b?, Yy = a(l + Xs),

1 1
K"by =;{f —7fb* —nxY"b, }, K'Yy = ;{Ho —7fas —nxY "y},

or "y
R R
T 1 T T r 3yTyzyk "nyr Iur
ik =T 5{51' Y + 0y — aiky"} + 5 + A0 s sk + A" S ks

Cl ={T" fO + ' XY s+ mxa YT 4+ XY,
L =LY A XY ) sk A0 (XY XY ) s+ {7 O+ XY sk
+ ' {x Y+ xYI sk 4+ {xinY + XY+ xaYs +xYi )

Now, we take the same coordinate transformation that introduced in the proof
of Theorem 1.1 and one can see that

K1

Ko = WSO_Z + Ro, (414)
_ kn 5_9 2K10 _
Koo — mS a” + WSQ + K00, (415)
K14 o
Ko; = msa ~+ Roi, (4.16)
[ = kb, (4.17)
fi _
fO = 7{)2 7828C¥+f05 (418)
where
Ko 1= Z"{AUAv Kio = ZfﬁAu s Foo 1= Z KABU U™,
A=2 A=2 A,B=2
Roi = kau®, for="Y  fau?
A=2 A=2

Substitiuting (4.11)-(4.13) in (4.10) and using Malpe program, yields

Aoi + A2i@® + Agia* + Agia® + V02 — s2(Aya + Aia” + A5a°) =0 (4.19)
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where Ag;, ... Ag; are polynomials of s. Thus

Ag; + Ag;ia® + Ay + Agia® = 0, (4.20)
Ay + Asza® + As;at = 0. (4.21)
From (4.21), for ¢ = 1 we obtain
As@® + Asa* + A30° + Asa® + Aja + Ag = 0, (4.22)
where Ay, ..., As are polynimials of s. From (4.22) have
Agat + Asa®> + Ag =0 (4.23)
Asat + 436>+ A1 =0 (4.24)
By Maple program, (4.24) implies that
Mz7837 + M36s3C + M358% + - 4+ My =0, (4.25)
where M;, 0 < i < 37 are funstions of k and &, and specially
Ms7 := 49152nkgk1, (4.26)
Mg = 64n(3R10 — 8866Rpk1), (4.27)
Mss = 32(3 — 65n)R10 + 512((5871 — 826b%)n — 36)Rok1 + 3072nbR3, (4.28)
Mo = 3(1 +n)b " (k2a® + R2b?). (4.29)

From (4.25) we have M; =0, (0 <4 < 37). From (4.26) and (4.27) we obtain
Fok1 = k10 = 0. Thus from (4.28) we get ko = 0, i.e.

Kka =0. (4.30)
Putting (4.30) in (4.29) we obtain

k1 = 0. (4.31)
From (4.30) and (4.31) it follows that x = constant. Thus F = e"F is locally
Minkowski metric. g

5. Proof of Theorem 1.3

In this section, we study conformally flat weak Einstein Finsler metric F' =
aexp(2s)/s, s:= f/a. The Ricci curvature of a conformally flat («, 8)-metric
F = a¢(B/«) is computed in [4]. In fact we have the following.

Lemma 5.1. Let F = a¢(s), s:= f/a be a conformally flat (o, B)-metric on
a manifold M, that is, there ezists a locally Minkowski metric F = dqﬁ(ﬁ/d)
such that F = exp(r)F, where = k(z) is a scalar function on M. Then, the
Ricci curvature of F' is determined by

Ric =c1||Vk||26% + cok2 + cshofa + caf a2

+csfia+ 06642 + Cc7KQ0- (51)
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where
Ce 1 = 06161”/%1'3' + ce2fo,
Ce1 = — ¢
' ¢ —s¢'’
¢¢//
Cg2 : —

(60— s¢)[(¢ — s8') (b2 — s2)¢"]

o i Y s e
and ||Vk||3 = @Y kikj, f = V'K, f1 =Y Kij, fo =0V k;;. Herecy,ca,cs,ca,
¢s, 7 are the functions only in s and are independent of the &, ko, koo, f, f1,
f2 and @Y ky;.

Firstly, we show that if F' = avexp(2s)/s be a conformally flat weak Einstein
metric then it is a Ricci flat metric.

Lemma 5.2. Let F = a¢(s), s := /a, be a conformally flat weak Finstein
metric on a manifold M with the dimension n > 3, where ¢(s) = exp(2s)/s.
Then F is a Ricci flat metric.

Proof. Since F is a conformally flat weak Einstein metric, from (1.3) and (5.1)
we have

36 N - -
(n—1) (f + 0>F2 =c1||VE||2&% + carg + cako fa + ca f2 a3

+csfia+ ngg + ¢7k00, (52)
where o = o(x) and 0 := t;(z)y’. Let
Ay = (s—1), Ay:=(s>+2b%s% — 2b%s + b — 25%).

We put ¢(s) = exp(2s)/s and by use of Maple program have

G o — C2 n — C3 or — C4
TRABAZ TP 1643420 0 gAAL TP 16A%AY

C5 = 07527 Ce1 = Cﬁ’ Ce2 = 66%27 Cr = o 2 (53)
14, A2 24, 24, A 14, A2

C1

where ¢y, ..., ¢ are polynomials of s.
We take the same coordinate transformation that is used in Theorem 1.1 for
& and B. In this case we have

jo)
I
[kt
|
o
Il

e e
2 — g2 b2 — g2
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Thus
~ exp(k)b _

F = exp(r)ig(s) = 22 54(s),

VB2 _ s2

~ i)S/ﬁ?ll _ ~_
f=rb, fi=—% o + bk,
p2 _ g2
72 l1s 2 7
fo =b%k11, 0 = ———a“ + tg, (54)
p2 _ o2

where %y := X% _,tau?. Using (5.4), Eq. (5.2) is equivalent with the following
equations:
[0152||V/<;||§ + eok2s? + csb? ks 4 cak2bt + c5k11b%s

~2
2\1.2 2 =2 -
+ (0616”:‘%]‘ + cgak11b )b + c7K118 :| = + cokg + c7Koo

p2 _ 42
— 1)e"(3t1b w2
_(nzle (b?; 1bs + 0 ) s2g,  (5.5)
-
(2¢95 + c3b*) k1K a4 + (c5b® + 2¢78) k14 = 3(n — 1)e"t 2bo. (5.6)

Substituting (5.3) in (5.5) and (5.6) and multiplying by 1643 A4(b% — s2) we
get

[26152HV/~@||§A§ + Gy A2K2 5% 4 28302 K3 s + Car2b + 4Cs A2 A2k, 0%
=+ (856114%144215“/@]‘ + 8662A%A3K1162)52 =+ C7/<,1152 542 + (6214%/%3
+ 48, A2 A2R00) (B2 — 5%) = (n — 1)e"(3t1bs 4 ge"b*p)a’o, (5.7)
(262 A%5 4 2230% k1 ka + (45 A2A2D? + 867 A2 A2s)k1a = 3(n — 1)e"t 4bp. (5.8)

Since ¢(s) = exp(2s)/s, one can see that, the left hand side of (5.7) is a
polynomial of s, meanwhile the right hand side is a multiple of exponential
function ¢(s) = exp(2s). Thus

3t1bs + oe"b?p =0

Thus 0 = t; = 0. By the same way, from (5.8), we get t4 = 0. Therefore
0 = 0 = 0 and thus Ric = 0. (]

Now, lets to prove Theorem 1.3.

Proof of Theorem 1.3: We suppose that b # 0. Using t; = 0 = 0, from the
Eq. (5.5), it follows that, there exists a function £ := £(s) such that

cokakp + criap = &E(s)0ap- (5.9)
For A # B, Eq. (5.9) reduced to

CokakB + crkap = 0. (5.10)
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Multiplying (5.10) by 1643 A3 and using Maple program, one can see that
192(2 — n)kaps'® — 16[(2 —n)(3kakp — 62648) + 6/{,4371]517
+ Nigs'®+ -+ Ny =0,
where N, ..., Nig are finctions of k4, kp, kap. It follows that
kap = kakp =0, (A# B).
Since F is Ricci flat, (5.6) becomes to
(2¢9s + 0352)f<;m,4 + (0552 + 2¢78)k14 = 0. (5.11)
Multiplying (5.11) with 44; A3 and by Maple program, we get
96(n — 2)/{1A516 —8[(n —2)(38Kk14 + 3k1K4) — 6/<;1A]sl5
+ Prastt -+ Py =0. (5.12)
From (5.12), we have that
KiA = Kika =0 (5.13)
Now, we prove that k1 = k4 = 0. By multiple (5.5) in 1643 A%(b% — 5%) and
use Maple program we get
192(n — 2)(Roo — k1187)s*° — 16[(62(n — 2) — 3) (Koo — K11&°)
+3(n—2)(Rg — k1a%)]s" + Myss® + -+ Mo =0, (5.14)
where M;, (0 < i < 18) are polynomials of k1, k11, Ko, Roo-
From (5.14), we have
Re —kia® =0 (5.15)

From (5.13) and (5.15), it follows that k1 = k4 = 0. Thus & is a constant and
therefore F is a locally Minkowski metric.

Acknowledgment: The author would like to thanks the unknown referee for
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