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Abstract. This paper is devoted to study of a class of conformally flat (α, β)-

metrics that have of the form F = α exp(2s)/s, where s := β/α. They are

called Kropina change of exponential (α, β)-metrics. We prove that if F has

relatively isotropic mean Landsberg curvature or almost vanishing Ξ-curvature

then it is a Riemannian metric or a locally Minkowski metric. Also, we prove

that, if F be a weak Einstein metric, then it is either a Riemannian metric or

a locally Minkowski metric.
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1. Introduction

The important and interesting applications of conformal geometry in phys-

ical theories have caused that this field has more studying and consideration.

For example, in general relativity the light-like geodesics are invariant under

the conformal relation between pseudo-Riemannian metrics. Also, the Weyl

theorem states that by studying the conformal and projective properties of a

Finsler metric, the properties of metric can be determined uniquely[12, 17].
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Two Finsler metrics F and F̃ on a differentiable manifold M are said to be

conformally related if F = eκ(x)F̃ where κ(x) is a scalar function on M and is

called the conformal factor. In the cace of F̃ is a locally Minkowski metric, we

say that F is a conformally flat metric.

One of the interesting problems in conformal geometry is obtaining the local

metric structure of conformally flat Finsler metrics [3]. But, in general case,

this is a difficult problem. Thus, the researchers considered special classes of

Finsler metrics. Ichijyō and Hashiguchi gave a condition that a Randers metric

is conformally flat [10]. Randers metrics are contained in an important class

of Finsler metric i.e. (α, β)-metrics which have many applications in physics,

biology and etc (see [1]).

The Finsler metric F = αϕ(s), s := β/α is an (α, β)-metric where α :=√
aijyiyj is a Riemannian metric, β := bi(x)y

i is a 1-form and ϕ(s) is a C∞

function that satisfied a certain inequality [15]. (α, β)-metrics have been widely

studied because they are computable and also, the researches on (α, β)-metrics

enrich Finsler geometry and suggested many references for further studies.

The study of conformally flat (α, β)-metrics with special curvature properties

is an interesting field. L. Kang considered conformally flat Randers metrics of

scalar flag curvature and proved that they are projectively flat and then classi-

fied such metrics completely [11]. Conformally flat (α, β)-metrics with isotropic

S-curvature are considered in [4] and it is shown that they are Riemannian or

locally Minkowski metric and also conformally flat weak Einstein (α, β)-metrics

of polynomial type are classified. In [6] it is proved that any non-Riemannian

conformally flat weakly Landsberg (α, β)-metric must be a locally Minkowski

metric. Conformally flat (α, β)-metrics with constant flag curvature are con-

sidered by Chen et al. and they showed that the such metrics are either locally

Minkowski or Riemannian metrics [5]. Tayebi and Razgordani studied confor-

mally flat weak Einstein fourth root (α, β)-metrics and proved that they were

also either locally Minkowskian or Riemannian [22]. For more references see

[2, 16, 19, 21]

The Kropina metric F = α2/β is an (α, β)-metric which firstly was investi-

gated by V.K. Kropina [13]. This metric appears when the general dynamical

system represented by a Lagrangian function [3]. Due to this, for any Finsler

metric F , one can consider the transformation

F (x, y) → F̄ (x, y) :=
F 2

β
. (1.1)

The transformation (1.1) is called the Kropina change of Finsler metric F ,

because F̄ is reduced to the Kropina metric, when F reduced to a Riemannian

metric α.

A class of (α, β)-metrics that deserve more attention are exponential (α, β)-

metrics. They are of the form F = α exp(s), s := β/α, and have studied by
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many authors [18, 20, 24, 25]. This class of metrics is interesting, because the

exponential metric

F = α exp(

∫ s

0

q
√
b2 − t2

1 + qt
√
b2 − t2

dt),

is an almost regular unicorn metric, where b := ∥β∥α and q is a constant. A

unicorn metric is a Landsberg metric that is not Berwaldian [23]. Tayebi and

Amini considered conformally flat exponential (α, β)-metric with some special

curvature properties [20].

This paper is devoted to study of the conformally flat Kropina change of

exponential (α, β)-metric i.e.

F = αexp(2s)/s, s :=
β

α
.

For a Finsler metric F , we have the basic tensors, fundamental tensor gy

and Cartan tortion C. By taking horizontal covariant derivative of Cartan

torsion along the geodesics we obtain the tensor field L that is called Landsberg

curvature. The trace of C and L are called the mean Cartan torsion I and

the mean Landsberg curvature J, respectively. A Finsler metric F is called

relatively isotropic mean Landsberg curvature if there exists a scalar function

c = c(x) onM such that J+cF I = 0. In this paper, we consider the conformally

flat Kropina change of exponential (α, β)-metric that has relatively isotropic

mean Landsberg curvature and prove the following.

Theorem 1.1. Let F = α exp(2s)/s, s := β/α be the conformally flat (α, β)-

metric on a manifold M of dimension n ≥ 3. Suppose that F has relatively

isotropic mean Landsberg curvature

J+ c(x)F I = 0,

where c = c(x) is a scalar function on M . Then F reduces to a Riemannian

metric or a locally Minkowski metric.

For an n-dimensional Finsler manifold (M,F ), Ξ-curvature Ξ = Ξidx
i is

a non-Riemannian quantity that is defined by the non-Riemannian quantity

S-curvature S as follows:

Ξi := S.i;my
m − S;i,

where ”; ” and ”.” denote the horizontal and vertical covariant derivatives with

respect to the Berwald connection of F , respectively. Finsler manifold (M,F )

is said to be of almost vanishing Ξ-curvature if

Ξi := −(n+ 1)F 2
( θ
F

)
yi
, (1.2)

where θ := ti(x)y
i is a 1-form on M . In this paper, firstly, the Kropina change

of exponential (α, β)-metric with almost vanishing Ξ-curvature are considered
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and prove that it has vanishing Ξ-curvature. Then, we prove the following

theorem.

Theorem 1.2. Let F = α exp(2s)/s, s := β/α be the conformally flat (α, β)-

metric on a manifold M of dimension n ≥ 3. Suppose that F has almost

vanishing Ξ-curvature, then F is a Riemannian metric or a locally Minkowski

metric.

A weak Einstein metric is a Finsler metric F on an n-dimensional manifold

M , that the Ricci curvature Ric satisfies

Ric = (n− 1)
(3θ
F

+ σ
)
F 2, (1.3)

for a scalar function σ := σ(x) and a 1-form θ := ti(x)y
i on M . If θ = 0,

then F is called Einstein metric, in this case we have Ric = (n − 1)σF 2.

If Ric = 0, then F is called Ricci flat. In this paper we study the weak

Einstein Kropina change of exponential (α, β)-metrics. At first, we prove that

every weak Einstein Kropina change of exponential (α, β)-metric is a Ricci-flat

metric. Then, we prove the following theorem.

Theorem 1.3. Let F = α exp(2s)/s, s := β/α be the conformally flat (α, β)-

metric on a manifoldM of dimension n ≥ 3. Suppose that F is a weak Einstein

metric, then F is either a Riemannian metric or a locally Minkowski metric.

2. Preliminaries

Let F = F (x, y) be a Finsler metric on an n-dimensional differentiable mani-

foldM and TM0 :=
⋃

x∈M TxM−{0} the slit tangent bundle. The fundamental

tensor (gy) = (gij(x, y)) of F is a quadratic form on TxM that is defined

gij(x, y) :=
1

2
[F 2]yiyj (x, y).

A curve x = xi(t) on Finsler space (M,F ) is called geodesic if satisfies in the

following system of ODEs:

d2xi

dt2
+Gi(x,

dx

dt
) = 0,

where Gi = Gi(x, y) are called the geodesic coefficients of F and defined by

Gi =
1

4
gil

{
[F 2]xmylym − [F 2]xl

}
.

The Riemann curvature of R := Ri
kdx

k ∂
∂xi is defined by

Ri
k := 2(Gi)xk − (Gi)xjykyj + 2Gj(Gi)yjyk − (Gi)yj (Gj)yk . (2.1)

The trace of the Riemann curvature is called the Ricci curvature Ric and is

defined by

Ric = Rm
m.
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In Finsler geometry, there are some geometric quantities that are vanishing

for Riemannian metrics and are called non-Riemannian quantities. The Cartan

torsion C is a symmetric trilinear form C := Cijkdx
i⊗ dxj ⊗ dxk on TM0 that

is defined as follow

Cijk :=
1

4
[F 2]yiyjyk =

1

2

∂gij
∂yk

.

One can see that F is a Riemannian metric if and only if C = 0. Thus it is a

non-Riemannian quantity.

The mean Cartan torsion of F is the tensor field I := Iidx
i, that is defined

by

Ii := gjkCijk.

Furtheremore, one can see that

Ii =
∂

∂yi

[
ln
√

det(gjk)
]
.

The horizontal covariant derivative of Cartan torsion along the geodesics

define the tensor field L := Lijkdx
i ⊗ dxj ⊗ dxk on slit tangent bundle TM0,

that is called the Landsberg curvature of F . Thus Lijk := Cijk;my
m, where

”; ” denoted the horizontal covariant derivative with respect to the Berwald

connection of F . Also, the Landsberg curvature can be expressed as following

Lijk = −1

2
FFym [Gm]yiyjyk . (2.2)

A Finsler metric F is called the Landsberg metric if L = 0.

The mean Landsberg curvature J := Jidx
i is a non-Riemannian quantity

that is obtained by horizontal covariant derivative of the mean Cartan torsion

I along the geodesics of F . Thus

Ji := Ii;my
m. (2.3)

Also, the mean Landsberg curvature J can be obtained as following

Ji := gjkLijk.

A Finsler metric F is called weak Landsberg metric if J = 0.

A Finsler metric F is called of relatively isotropic mean Landsberg curvature

if J/I, the relative growth rate of the mean Cartan torsion along geodesics of

F be isotropic, i.e. there exists a scalar function c = c(x) on M such that

J+ cF I = 0.

For an n-dimensional Finsler manifold (M,F ), the Busemann-Hausdorff vol-

ume form dVF := σF (x)dx
i . . . dxn is defined by

σF (x) := V ol
( Bn(1)

V ol
{
yi ∈ Rn|F

(
yi ∂

∂xi < 1
)})

.
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The S-curvature S(y) can be defined by

S(y) :=
∂Gi

∂yi
− yi

∂

∂xi
[
lnσF (x)

]
,

where y ∈ TxM−{0}. From the S-curvature one can obtain the non-Riemaniann

quantity Ξ-curvature Ξ := Ξidx
i as follows:

Ξi := S.i;my
m − S;i,

where ”.” and ”; ” denote the vertical and horizontal covariant derivative with

respect to the Berwald connection of F, respectively.

A Finsler metric F is an (α, β)-metric if F = αϕ(s), s := β/α, where α =√
aij(x)yiyj is a Riemannian metric, β = bi(x)y

i is a 1-form with ||βx|| < b0,

x ∈M and ϕ(s) is a positive C∞ function on (−b0, b0) satisfying

ϕ(s)− sϕ
′
(s) + (b2 − s2)ϕ

′′
(s) > 0, |s| ≤ b < b0. (2.4)

In this case, the metric F = αϕ(s) is a positive definite Finsler metric [8]. The

fundamental tensor F = αϕ(s) is given by

gij = ρaij + ρ0bibj + ρ1(biαi + bjαi) + ρ2αiαj ,

where αi := α−1aijy
j , and

ρ := ϕ(ϕ− sϕ′), ρ0 := ϕϕ′′ + ϕ′ϕ′,

ρ1 := −s(ϕϕ′′ + ϕ′ϕ′) + ϕϕ′, ρ2 := s{s(ϕϕ′′ + ϕ′ϕ′)− ϕϕ′}.

One can see that

gij = ρ−1{aij − τbibj − ηY iY j}, (2.5)

where bi := aijbj and

η :=
µ

1 + Y 2µ
, µ :=

ρ2
ρ
, Y 2 := 1 + (λ+ ϵ)s+ λϵb2,

Y i :=
yi

α
+ λbi, λ :=

ϵ− δs

1 + δb2
, ϵ :=

ρ1
ρ2
,

δ :=
ρ0 − ϵ2ρ2

ρ
, τ :=

δ

1 + δb2
.

Let

rij :=
1

2
(bi|j + bj|i), sij :=

1

2
(bi|j − bj|i)

where bi|j denote the coefficients of the covariant derivative of β with respect

to α. We denote

rij := aimrmj , r00 := rijy
iyj , ri := bmrmi,

r0 := riy
i, ri0 := rimy

m, sij := aimsmj ,

si0 := simy
m, si := bmsmi, s0 := siy

i,
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The geodesic coefficients Gi of an (α, β)-metric F = αϕ(s) are given by

Gi = Gi
α + αQsi0 + {−2Qαs0 + r00}

{
Ψbi +Θα−1yi

}
, (2.6)

where Gi
α is the geodesic coefficients of α and

Q :=
ϕ′

ϕ− sϕ′
,

Θ :=
ϕϕ′ − s(ϕϕ′′ + ϕ′ϕ′)

2ϕ[ϕ− sϕ′ + (b2 − s2)ϕ′′]
,

Ψ :=
ϕ′′

2[ϕ− sϕ′ + (b2 − s2)ϕ′′]
.

For more details, see [8].

3. Kropina change of exponential (α, β)-metrics

In this paper we focus on the Kropina change of exponential (α, β)-metric.

This is of the form

F = α exp(2s)/s, s := β/α.

Since ϕ(s) = exp(2s)/s must be positive function, thus s > 0. One can see that

F is not a regular (α, β)-metric, but we have the following lemma.

Lemma 3.1. F = α exp(2s)/s, s := β/α, is a (non-regular) Finsler metric, if

and only if 0 < ∥βx∥α < 1

Proof. Let F = α exp(2s)/s, s := β/α, is a Finsler metric, then from (2.4) we

have
s3 + 2b2s2 − 2b2s+ b2 − 2s4

s3
> 0.

For s = b, we get 0 < b < 1. Thus 0 < ∥βx∥α < 1. The convers is easy to

prove. □

3.1. Proof of Theorem 1.1. Now, we are going to prove Theorem 1.1. In [7]

the mean Cartan torsion of an (α, β)-metric are computed.

Lemma 3.2. ([7])For an (α, β)-metric F = αϕ(s), s = β/α, the mean Cartan

torsion is given by

Ii = − 1

2F

Φ

∆
(ϕ− sϕ′)hi, (3.1)

where

∆ := 1 + sQ+ (b2 − s2)Q′,

Φ := −(n∆+ 1 + sQ)(Q− sQ′)− (b2 − s2)(1 + sQ)Q′′,

Ψ1 :=
√
b2 − s2∆

1
2

[√
b2 − s2Φ

∆
3
2

]′

,

hj := bj − α−1syj .
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It is well known that, by Deicke’s theorem, F is a Riemannian metric if and

only if I = 0. Thus from (3.1) we have the following.

Lemma 3.3. An (α, β)-metric F = αϕ(s), s := β/α is a Riemannian metric

if and only if Φ = 0.

From (2.3) and (3.1), one can see that the mean Landsberg curvature of an

(α, β)-metric F = αϕ(s), s = β/α, is given by

Jj =
1

2α4∆

{
2α3

b2 − s2

[Φ
∆

+ (n+ 1)(Q− sQ′)
]
(s0 + r0)hj

+
α2

b2 − s2

[
Ψ1 + s

Φ

∆

]
(r00 − 2αQs0)hj

+ α
[
− α2Q′s0hj + αQ(α2sj − yjs0) + α2∆sj0

+ α2(rj0 − 2αQsj)− (r00 − 2αQs0)yj

]Φ
∆

}
, (3.2)

where yj := aijy
i. For more details see [7, 14]. From (3.1) and (3.2), we

obtained that

Jj + c(x)FIj = − 1

2α4∆

{
2α3

b2 − s2

[Φ
∆

+ (n+ 1)(Q− sQ′)
]
(s0 + r0)hj

+
α2

b2 − s2

[
Ψ1 + s

Φ

∆

]
(r00 − 2αQs0)hj + α

[
− α2Q′s0hj

+αQ(α2sj − yjs0) + α2∆sj0 + α2(rj0 − 2αQsj)

−(r00 − 2αQs0)yj

]Φ
∆

+ c(x)α4Φ(ϕ− sϕ′)hj

}
. (3.3)

Since we study conformally flat (α, β)-metrics, we need the following Lemma.

Lemma 3.4. ([1]) Let F = αϕ(s), s = β/α, be an (α, β)-metric. Then F is

locally Minkowski metric if and only if α is flat and β is parallel with respect

to α.

Now, let F = αϕ(s), s = β/α, is a conformally flat Finsler metric, it means

that, there exists a Minkowski metric F̃ such that F̃ = eκ(x)F , where κ(x)

is a scalar function on the manifold. Since F = αϕ(β/α), we obtain that

F̃ = α̃ϕ(β̃/α̃) is an (α, β)-metric, where

α̃ = eκ(x)α, β̃ = eκ(x)β. (3.4)

From (3.4), we have

ãij = e2κ(x)aij , b̃i = eκ(x)bi.
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The Christoffel symbols Γi
jk of α and the Christoffel symbols Γ̃i

jk of α̃ are

related by

Γ̃i
jk = Γi

jk + δijκk + δikκj − κiajk,

where κi :=
∂κ
∂xi and κi := aijκj . Thus, we obtain

b̃i∥j =
∂b̃i
∂xj

− b̃sΓ̃
i
jk = eκ(bi|j − bjκi + brκ

raij). (3.5)

where b̃i∥j denote the coefficients of the covariant derivative of β̃ with respect

to α̃.

Scince F̃ is a Minkowski metric, from Lemma (3.4), we have b̃i∥j = 0. Thus

bi|j = bjκi − brκ
raij . (3.6)

From (3.6) we obtain

rij =
1

2
(κibj + κjbi)− brκ

raij , rj = −1

2
(brκr)bj +

1

2
κjb

2, (3.7)

ri0 =
1

2
[κiβ + (κry

r)bi]− κrb
ryi, sij =

1

2
(κibj − κjbi), (3.8)

sj =
1

2
(brκr)bj − κjb

2, si0 =
1

2
[κiβ − (κry

r)bi]. (3.9)

Further, we have

r00 = (κry
r)β − (κrb

r)α2, (3.10)

r0 =
1

2
(κry

r)b2 − 1

2
(κrb

r)β, (3.11)

s0 =
1

2
(κrb

r)β − 1

2
(κry

r)b2. (3.12)

From (3.11) and (3.12), we see that a conformally flat (α, β)-metric satisfying

r0+ s0 = 0 which means that the 1-form β has constant length with respect to

α.

In order to simplify the computations, we take an orthonormal basis at any

point x with respect to α such that α =
√∑n

i=1(y
i)2 and β = by1, where

b := ∥βx∥α. Then, we take the following coordinate transformation

ψ : (s, uA) −→ (yi),

in TxM , that is

y1 =
s√

b2 − s2
ᾱ, yA = uA, 2 ≤ A ≤ n, (3.13)

where ᾱ =
√∑n

i=2(u
A)2. In this case, we have

α =
b√

b2 − s2
ᾱ, β =

bs√
b2 − s2

ᾱ. (3.14)
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Then, by (3.6)-(3.14) one can obtain

r00 = −bκ1ᾱ2 +
bsκ̄0ᾱ√
b2 − s2

, r0 = −s0 =
1

2
b2κ̄0, (3.15)

rA0 =
1

2

κAbsᾱ√
b2 − s2

− (bκ1)uA, r10 =
1

2
bκ̄0, (3.16)

sA = −1

2
κAb

2, s1 = 0, (3.17)

sA0 =
1

2

κAbsᾱ√
b2 − s2

, s10 = −1

2
bκ̄0, (3.18)

hA = −
√
b2 − s2suA

bᾱ
, h1 = b− s2

b
. (3.19)

where κ̄0 := κAu
A.

Proof of Theorem 1.1: Since b̃i∥j = 0, we have that b̃ = constant. If b̃ = 0,

then F = ek(x)α̃ is a Riemannian metric. Now, let F not be a Riemannian met-

ric. Suppose that F is a conformally flat (α, β)-metric with relatively isotropic

mean Landsberg curvature. By (3.3) and r0 + s0 = 0, we obtain

α2

b2 − s2
{
Ψ1 + s

Φ

∆

}
(r00 − 2αQs0)hj + α

{
− α2Q′s0hj

+ αQ(α2sj − yjs0) + α2∆sj0 + α2(rj0 − 2αQsj)

− (r00 − 2αQs0)yj
}Φ

∆
− c(x)α4Φ(ϕ− sϕ′)hj = 0. (3.20)

Putting j = 1 in (3.20), we have

α2

b2 − s2

{
Ψ1 + s

Φ

∆

}
(r00 − 2αQs0)h1 + α

{
− α2Q′s0h1

+ αQ(α2s1 − y1s0) + α2∆s10 + α2(r10 − 2αQs1)

− (r00 − 2αQs0)y1
}Φ

∆
− c(x)α4Φ(ϕ− sϕ′)h1 = 0. (3.21)

Substituting (3.14)-(3.19) into (3.21) and then multiplying the resulting equa-

tion with −2∆(b2 − s2)3/2 we have

b2ᾱ3

{
2
√
b2 − s2∆

[
bcΦ(ϕ− sϕ′) + Ψ1κ1

]
ᾱ− κ̄0

[
b2ΦQ′(b2 − s2)

+ Φb2(sQ+ 1) + ∆Φb2 − 2Ψ1∆(b2Q+ s)
]}

= 0. (3.22)

From (3.22), we get

∆
[
bcΦ(ϕ− sϕ′) + Ψ1κ1

]
= 0, (3.23)

κ̄0
[
b2ΦQ′(b2 − s2) + Φb2(sQ+ 1)−∆Φb2 − 2Ψ1∆(b2Q+ s)

]
= 0. (3.24)

One can see that (3.24) simplify as follow

κ̄0
[
b2Φ

(
Q′(b2 − s2) + sQ+ 1−∆

)
− 2Ψ1∆(b2Q+ s)

]
= 0 (3.25)
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substituting ∆ = Q′(b2 − s2) + sQ+ 1, in (3.25), we get

Ψ1∆(b2Q+ s)κ̄0 = 0. (3.26)

Now let j = A in (3.20), thus we have

α2

b2 − s2
[
Ψ1 + s

Φ

∆

]
(r00 − 2αQs0)hA + α

[
− α2Q′s0hA

+ αQ(α2sA − uAs0) + α2∆sA0 + α2(rA0 − 2αQsA)

− (r00 − 2αQs0)uA
]Φ
∆

+ c(x)α4Φ(ϕ− sϕ′)hA = 0. (3.27)

Putting (3.14)-(3.19) into (3.27) and using the same method used in the case

of j = 1 and from ∆ = Q′(b2 − s2) + sQ+ 1, we get

(s∆+ s+ b2Q)b2ΦκAᾱ
2 −

[
(s∆+ s+ b2Q)b2Φ

+ 2s(b2Q+ s)Ψ1∆
]
κ̄0uA = 0, (3.28)

s
√
b2 − s2[Φbc(ϕ− sϕ′) + Ψ1κ1]∆uA = 0. (3.29)

One can easily see that (3.29) is equivalent to (3.23). Also, multiplying (3.28)

with uA implies that

s(b2Q+ s)Ψ1∆κ̄0ᾱ
2 = 0. (3.30)

It is obvious that (3.30) is equivalent to (3.26). Anyway, we showed that a con-

formally flat (α, β)-metric with relatively isotropic mean Landsberg curvature

satisfiy (3.23) and (3.26).

If b2Q+ s = 0, then we obtain ϕ = k
√
b2 − s2, where k is a constant. This

is a contradiction with the assumption that ϕ = exp(2s)/s. Thus b2Q+ s ̸= 0.

Then from (3.26) we conclude that Ψ1 = 0 or κA = 0.

If Ψ1 = 0, then using (3.23) we obtain that Φ = 0, and from Lemma 3.3, we

see that F is a Riemannian metric.

If Ψ1 ̸= 0, then κA = 0. In this case, we prove that κ1 = 0.

Simplifying (3.23) and multiplying it by ∆2, we get{
[−sΦ+ (b2 − s2)Φ′]∆− 3

2
(b2 − s2)Φ∆′

}
κ1 − cb∆2Φ(ϕ− sϕ′) = 0. (3.31)

Putting ϕ = exp(2s)/s into (3.31) and using maple program, we can obtain the

following

κ1s
6(ζ10s

10 + · · ·+ ζ0) + 2cbe2s(ξ14s
14 + · · ·+ ξ0) = 0, (3.32)

where ζi (0 ≤ i ≤ 10) and ξj (0 ≤ j ≤ 14) are polynomials of b. From (3.32),

we get

κ1(ζ10s
10 + · · ·+ ζ0) = 0, (3.33)

2cb(ξ14s
14 + · · ·+ ξ0) = 0. (3.34)
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From (3.33), (3.34) and that ζ0 = 2(2− n)b6 and ξ0 = 4(1 + n)b6, we conclude

that

κ1 = 0, c = 0.

Thus κ1 = κA = 0. It follows that κ = constant, which means that F is a

locally Minkowski metric. This completes the proof. □

4. Proof of Theorem 1.2

In this section, firstly we study the Kropina change of exponential (α, β)-

metric with almost vanishing Ξ-curvature. From (2.6), the spray coefficients of

a (α, β)-metric F = αϕ(s), s = β/α, are rewritten as follow

Gi = Gi
α +Hi, (4.1)

where

Hi :=
1

α
{AΘyi + αAΨbi + α2Qsi0},

A := r00 − 2αQs0.

We denote H := ∂Hm

∂ym . By a simple computation, one can see that

H =
1

α
{(n+ 1)AΘ+ αQ′s0 +AΨ′(b2 − s2)}

+ 2Ψ
[
r0 − sQs0 −Q′(b2 − s2)s0

]
.

Let Π := ∂Gm

∂ym . By definition Ξ-curvature of a Finsler metric can be expressed

as follows

Ξi = Πyixmym −Πxi − 2ΠyiymGm. (4.2)

Substituting (4.1) in (4.2), we get

Ξi = H.i|my
m −H|i − 2H.i.mH

m, (4.3)

where ”|” denotes the horizontal covariant derivative with respect to α. By

compute each terms of the right hand side of (4.3), one can obtaine a formula

for Ξ-curvature of an (α, β)-metric. For details of computaition see [26].

Now, we can prove the following lemma.

Lemma 4.1. Let F = α exp(2s)/s, s := β/α be an (α, β)-metric on an n-

dimensional manifold M (n ≥ 3) with almost vanishing Ξ-curvature. Then F

has vanishing Ξ-curvature.

Proof. Let F = αϕ(s), s := β
α has almost vanishing Ξ-curvature, thus there

exists a 1-form θ := ti(x)y
i on M , such that

Ξi = −(n+ 1)F 2
( θ
F

)
yi

= − (n+ 1)

α

[
α2ϕti − ϕθyi − ϕ′θ(αbi − syi)

]
. (4.4)
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Putting ϕ(s) = α exp(2s)/s, s = β/α and (4.3) in (4.4) and using Maple

program, we obtain

Ai28α
28+· · ·+Ai1α+Ai0 = λ

[
αβ(α2ti−θyi)−(2β−α)θ(α2bi−βyi)

]
e2s, (4.5)

where Ai28, . . . , Ai0 are polynomials of s and

λ = 2αβ
[
β(α− β)(β2 − 2b2α2) + b2α4 − β4

]5
(α− β)4.

If λ = 0, then

β(α− β)(β2 − 2b2α2) + b2α4 − β4 = 0. (4.6)

From (4.6), we obtain

β2(2α2b2 + αβ − 2β2) = α3(2β − α)b2,

this means that α2 contains β as a factor, which is impossible, because n ≥ 3,

(see [9]).

Thus, from (4.5) we have

αβ(α2ti − θyi)− (2β − α)θ(α2bi − βyi) = 0. (4.7)

Contracting (4.7) with bi, yields

(βtib
i + θb2)α2 − 2θβ2 = 0, (4.8)

2θβ(b2α2 − β2) = 0. (4.9)

Note that b2α2 − β2 ̸= 0, thus from (4.9), it follows that θ = 0. Therefore

Ξ = 0. □

In order to prove Theorem 1.2, we need the following Lemma.

Lemma 4.2. ([26]) Let F and F̃ be two conformally related Finsler metrics

on a manifold M with conformal factor κ = κ(x). Then Ξ and Ξ̃-curvatures

satisfy

Ξ̃i = Ξi +B.i;my
m −B;i + 2Qr(S.i.r +B.i.r),

where κi :=
∂κ
∂xi , κ

r := girκi, B := F 2κrIr, Q
r := F 2

2 κ
r and ”; ” denotes the

horizontal covariant derivative with respect to the Berwald connection of F .

Proof of Theorem 1.2: Let F = α exp(2s)/s, s := β/α be a Minkowski

metric and F̃ = eκ(x)F is of almost vanishing Ξ-curvature. It follows that α

has zero sectional curvature and bi|j = 0, i.e. b = constant . If b = 0, then

F̃ = eκ(x)α is a Riemannian metric. Thus we suppose that b ̸= 0 and show

that F̃ is a Minkowski metric. Since F is Minkowski metric by Lemmas 4.1

and 4.2 we have

B.i;my
m −B;i + 2QrB.i.r = 0. (4.10)
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Now we can compute each term of equation (4.10) (see [26]).We denote

κr := girκi, κ
r
α := ariκi, f := biκi, κ0 := κiy

i, κij :=
∂κ

∂xi∂xj
,

fi := brκri, f0 := fiy
i, κ0i := κriy

r, κ00 := κijy
iyj , χ :=

κ0
α

+ λf,

χ0 :=
κ00
α

+ λf0, χ.i :=
∂χ

∂yi
, χ0i :=

κ0i
α

− κ00yi
α3

+ λ′f0s.i,

Y r
.i :=

∂Y r

∂yi
, ζr := κrα − τfbr − ηχY r, s.i :=

1

α2

(
biα− syi

)
,

yi := airy
r, bi := airbr, Φ1 := − Φ

2∆ϕ
(ϕ− sϕ′).

One can see that

κr =
1

ρ
ζr, Ir = Φ1

hr
α

= Φ1s.r, Irκ
r = Φ1s.rκ

r, κr.i = − ρ′

ρ2
ζrs.r +

1

ρ
ζr.i,

κr.i.k = −
( ρ′
ρ2

)′
ζrs.is.k − ρ′

ρ2

(
ζr.ks.i + ζrs.i.k + ζr.is.k

)
+

1

ρ
ζr.i.k,

Ir.i = Φ′
1s.rs.i +Φ1s.i.r,

Ir.i.k = Φ′′
1s.rs.is.k +Φ′

1(s.r.is.k + s.k.rs.i + s.i.ks.r) + Φ1s.r.i.k,

Note that F is a Minkowski metric, thus the horizontal covariant derivative

with respect to F reduces to common derivative with respect to the position

variable x. Thus

B.i;my
m =

∂B.i

∂xm
ym = E1i + F 2(E2i + E3i), (4.11)

where

E1i : = (F 2).i
∂κr

∂xm
ymIr = 2gijy

j Φ1

ρα2

{
(f0α− sκ00)− (τf0 + ηλχ0)(b

2 − s2)α
}
.

E2i : =
∂κr.i
∂xm

ymIr = −ρ
′Φ1

ρ2α

{
f0(1− τb2)− ηχ0Y

rbr
}
s.i +

sρ′Φ1

ρ2α2

{
κ00 − τf0sα

− ηχ0Y
ryr

}
s.i −

Φ1

ρα

{
(τ ′f0b

2 + η′χ0Y
rbr)s.i + ηY rbrχ0i + ηχ0Y

r
.i br

}
+
sΦ1

ρα2

{
(τ ′f0αs− η′χ0Y

ryr)s.i + ηY ryrχ0i + ηχ0Y
r
.iyr

}
.

E3i : =
∂κr

∂xm
ymIr.i =

1

ρ

{Φ′
1

α

(
f0 −

sκ00
α

)s.i +Φ1(−
f0yi + κ00bi

α3
− sκ0i

α2

+ 3s
κ00yi
α4

)}
− ηχ0

ρ

{Φ′
1

α2
(Y rbrα− Y ryr)s.i −

Φ1

α4

[
sY rairα

2

+ (Y rbryi + Y ryrbi)α− 3Y ryryi
]}

− τf0
ρ

{Φ′
1

α
(b2 − s2)s.i

+
Φ1

α4

[
3s2yi − b2yiα− 2sbiα

2)
]}
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and

B;i := F 2 ∂κ
r

∂xi
Ir =

F 2Φ1

ρα

{
fi −

sκ0i
α

− τfi(b
2 − s2)

− ηλ(b2 − s2)
(
λfi +

κ0i
α

)}
. (4.12)

Also, we have

2QrB.i.r = F 2{2κrIrκi + 2E4(F
2).i + 2κ0E5i + F 2E6i}, (4.13)

where

E4 : = (κkIk).rκ
r =

Φ1

ρ2

{
− ρ′

ρ
(ζrs.r)

2 + ζr.kζ
ks.r

}
+

1

ρ2

{
Φ′

1(ζ
rs.r)

2 +Φ1ζ
rζks.r.k

}
,

E5i : = (κrIr).i =
Φ1

ρ

{
− ρ′

ρ
ζrs.rs.i + ζr.is.r

}
+

1

ρ

{
Φ′

1ζ
rs.rs.i +Φ1ζ

rs.r.i

}
,

and

E6i : = E61i + E62i + E63i + E64i,

where

E61i : = −κr.i.kIrκk = −Φ1

ρ

{( ρ′
ρ2

)′
(ζrs.r)

2s.i +
ρ′

ρ2
(ζkζr.ks.rs.i

− ζrs.rζ
ks.k.i + ζks.kζ

r
.is.r)−

1

ρ
ζr.i.ks.rζ

k
}
,

E62i : = Ir.kκ
r
.iκ

k = − ρ′

ρ3

{
Φ′

1(ζ
rs.r)

2 +Φ1ζ
rζks.k.r

}
s.i

+
1

ρ

{
Φ′

1ζ
ks.kζ

r
.is.r +Φ1ζ

kζr.is.k.r

}
,

E63i : = κr.kIr.iκ
k = − ρ′

ρ3

{
Φ′

1(ζ
rs.r)

2s.i +Φ1ζ
ks.kζ

rs.r.i

}
+

1

ρ2

{
Φ′

1ζ
r
.kζ

ks.rs.i + ζkζr.ks.r.i

}
,

E64i : = Ir.i.kκ
rκk =

1

ρ2

{
Φ′′

1(ζ
rs.r)

2s.i +Φ′
1(ζ

rζks.r.ks.i

+ 2ζrs.rζ
ks.k.i) + Φ1ζ

rζks.r.k.i

}
.

It is easy to see that

gijy
j =(ρ+ sρ1 + ρ2)yi + (sρ0 + ρ1)αbi,

s.i.r =− bryi + yrbi
α3

+
sair
α2

+
3syryi
α4

,
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s.i.r.k =− 1

α3
{aikbr + akrbi + aribk}+

3s

α4
{ariyk + aikyr + akryi}

+
3

α5
{bryiyk + biykyr + bkyryi} −

15s

α6
yiyryk,

χ.i =
κi
α

− κ0yi
α3

+ λ′fs.i,

χ.i.k =− 1

α3
{κiyk + κkyi + κ0aik},

Y rbr =s+ λb2, Y ryr = α(1 + λs),

κrbr =
1

ρ
{f − τfb2 − ηχY rbr}, κryr =

1

ρ
{κ0 − τfαs− ηχY ryr},

Y r
.i =

δri
α

− yryi
α3

+ λ′brs.i,

Y r
.i.k =− 1

α3
{δri yk + δrkyi − aiky

r}+ 3yryiyk
α5

+ λ′′brs.is.k + λ′brs.i.k,

ζr.i ={τ ′fbr + η′χY r}s.i + ηχ.iY
r + ηχY r

.i ,

ζr.i.k =
{
(τ ′′fbr + η′′χY r)s.k + η′(χ.kY

r + χY r
.k)}s.i + {τ ′fbr + η′χY r}s.i.k

+ η′{χ.iY
r + χY r

.i}s.k + {χ.i.kY
r + χ.iY

r
.k + χ.kY

r
.i + χY r

.i.k}.

Now, we take the same coordinate transformation that introduced in the proof

of Theorem 1.1 and one can see that

κ0 =
κ1√
b2 − s2

sᾱ+ κ̄0, (4.14)

κ00 =
κ11

b2 − s2
s2ᾱ2 +

2κ̄10√
b2 − s2

sᾱ+ κ̄00, (4.15)

κ0i =
κ1i√
b2 − s2

sᾱ+ κ̄0i, (4.16)

f = κ1b, (4.17)

f0 =
f1√
b2 − s2

sᾱ+ f̄0, (4.18)

where

κ̄0 :=

n∑
A=2

κAu
A, κ̄10 :=

n∑
A=2

κ1Au
A, κ̄00 :=

n∑
A,B=2

κABu
AuB ,

κ̄0i :=

n∑
A=2

κAiu
A, f̄0 :=

n∑
A=2

fAu
A.

Substitiuting (4.11)-(4.13) in (4.10) and using Malpe program, yields

A0i +A2iᾱ
2 +A4iᾱ

4 +A6iᾱ
6 +

√
b2 − s2(A1iᾱ+A3iᾱ

3 +A5iᾱ
5) = 0 (4.19)
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where A0i, . . . A6i are polynomials of s. Thus

A0i +A2iᾱ
2 +A4iᾱ

4 +A6iᾱ
6 = 0, (4.20)

A1i +A3iᾱ
2 +A5iᾱ

4 = 0. (4.21)

From (4.21), for i = 1 we obtain

A5ᾱ
5 +A4ᾱ

4 +A3ᾱ
3 +A2ᾱ

2 +A1ᾱ+A0 = 0, (4.22)

where A0, . . . , A5 are polynimials of s. From (4.22) have

A4ᾱ
4 +A2ᾱ

2 +A0 = 0 (4.23)

A5ᾱ
4 +A3ᾱ

2 +A1 = 0 (4.24)

By Maple program, (4.24) implies that

M37s
37 +M36s

36 +M35s
35 + · · ·+M0 = 0, (4.25)

where Mi, 0 ≤ i ≤ 37 are funstions of κ and ᾱ, and specially

M37 := 49152nκ̄0κ1, (4.26)

M36 := 64n(3κ̄10 − 8866κ̄0κ1), (4.27)

M35 := 32(3− 65n)κ̄10 + 512((5871− 826b2)n− 36)κ̄0κ1 + 3072nbκ̄20, (4.28)

M0 := 3(1 + n)b17(κ21ᾱ
2 + κ̄20b

2). (4.29)

From (4.25) we have Mi = 0, (0 ≤ i ≤ 37). From (4.26) and (4.27) we obtain

κ̄0κ1 = κ̄10 = 0. Thus from (4.28) we get κ̄0 = 0, i.e.

κA = 0. (4.30)

Putting (4.30) in (4.29) we obtain

κ1 = 0. (4.31)

From (4.30) and (4.31) it follows that κ = constant. Thus F̃ = eκF is locally

Minkowski metric. □

5. Proof of Theorem 1.3

In this section, we study conformally flat weak Einstein Finsler metric F =

α exp(2s)/s, s := β/α. The Ricci curvature of a conformally flat (α, β)-metric

F = αϕ(β/α) is computed in [4]. In fact we have the following.

Lemma 5.1. Let F = αϕ(s), s := β/α be a conformally flat (α, β)-metric on

a manifold M , that is, there exists a locally Minkowski metric F̃ = α̃ϕ(β̃/α̃)

such that F = exp(κ)F̃ , where κ = κ(x) is a scalar function on M . Then, the

Ricci curvature of F is determined by

Ric =c1∥∇κ∥2α̃α̃2 + c2κ
2
0 + c3κ0fα̃+ c4f

2α̃2

+ c5f1α̃+ c6α̃
2 + c7κ00. (5.1)



18 Mosayeb Zohrehvand

where

c6 : = c61ãijκij + c62f2,

c61 : = − ϕ

ϕ− sϕ′
,

c62 : =
ϕϕ′′

(ϕ− sϕ′)
[
(ϕ− sϕ′)(b2 − s2)ϕ′′

] .
and ∥∇κ∥2α̃ := ãijκiκj , f := b̃iκi, f1 := b̃iyjκij , f2 := b̃ib̃jκij. Here c1, c2, c3, c4,

c5, c7 are the functions only in s and are independent of the α̃, κ0, κ00, f, f1,

f2 and ãijκij.

Firstly, we show that if F = α exp(2s)/s be a conformally flat weak Einstein

metric then it is a Ricci flat metric.

Lemma 5.2. Let F = αϕ(s), s := β/α, be a conformally flat weak Einstein

metric on a manifold M with the dimension n ≥ 3, where ϕ(s) = exp(2s)/s.

Then F is a Ricci flat metric.

Proof. Since F is a conformally flat weak Einstein metric, from (1.3) and (5.1)

we have

(n− 1)
(3θ
F

+ σ
)
F 2 =c1∥∇κ∥2α̃α̃2 + c2κ

2
0 + c3κ0fα̃+ c4f

2α̃2

+ c5f1α̃+ c6α̃
2 + c7κ00, (5.2)

where σ = σ(x) and θ := ti(x)y
i. Let

A1 := (s− 1), A2 := (s3 + 2b2s2 − 2b2s+ b2 − 2s4).

We put ϕ(s) = exp(2s)/s and by use of Maple program have

c1 =
c̄1

8A3
1A

2
2

, c2 =
c̄2

16A3
1A

2
2

, c3 =
c̄3

8A3
1A

4
2

, c4 =
c̄4

16A3
1A

4
2

,

c5 =
c̄5

4A1A2
2

, c61 =
c̄61
2A1

, c62 =
c̄62

2A1A2
, c7 =

c̄7
4A1A2

2

, (5.3)

where c̄1, . . . , c̄7 are polynomials of s.

We take the same coordinate transformation that is used in Theorem 1.1 for

α̃ and β̃. In this case we have

α̃ =
b̃√

b̃2 − s2
ᾱ, β̃ =

b̃s√
b̃2 − s2

ᾱ.
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Thus

F = exp(κ)α̃ϕ(s) =
exp(k)b̃√
b̃2 − s2

ᾱϕ(s),

f = κ1b̃, f1 =
b̃sκ11√
b̃2 − s2

ᾱ+ b̃κ̄10,

f2 = b̃2κ11, θ =
t1s√
b̃2 − s2

ᾱ2 + t̄0, (5.4)

where t̄0 := Σn
A=2tAu

A. Using (5.4), Eq. (5.2) is equivalent with the following

equations:[
c1b̃

2∥∇κ∥2ᾱ + c2κ
2
1s

2 + c3b̃
2κ21s+ c4κ

2
1b̃

4 + c5κ11b̃
2s

+ (c61δ
ijκij + c62κ11b̃

2)b̃2 + c7κ11s
2
] ᾱ2

b̃2 − s2
+ c2κ̄

2
0 + c7κ̄00

=
(n− 1)eκ(3t1b̃s+ σeκb̃2ϕ)

b̃2 − s2
ᾱ2ϕ, (5.5)

(2c2s+ c3b̃
2)κ1κA + (c5b̃

2 + 2c7s)κ1A = 3(n− 1)eκtAb̃ϕ. (5.6)

Substituting (5.3) in (5.5) and (5.6) and multiplying by 16A3
1A

4
2(b̃

2 − s2) we

get[
2c̄1b̃

2∥∇κ∥2ᾱA2
2 + c̄2A

2
2κ

2
1s

2 + 2c̄3b̃
2κ21s+ c̄4κ

2
1b̃

4 + 4c̄5A
2
1A

2
2κ11b̃

2s

+ (8c̄61A
2
1A

4
2δ

ijκij + 8c̄62A
2
1A

3
2κ11b̃

2)b̃2 + c7κ11s
2
]
ᾱ2 + (c̄2A

2
2κ̄

2
0

+ 4c̄7A
2
1A

2
2κ̄00)(b̃

2 − s2) = (n− 1)eκ(3t1b̃s+ σeκb̃2ϕ)ᾱ2ϕ, (5.7)

(2c̄2A
2
2s+ 2c̄3b̃

2)κ1κA + (4c̄5A
2
1A

2
2b̃

2 + 8c̄7A
2
1A

2
2s)κ1A = 3(n− 1)eκtAb̃ϕ. (5.8)

Since ϕ(s) = exp(2s)/s, one can see that, the left hand side of (5.7) is a

polynomial of s, meanwhile the right hand side is a multiple of exponential

function ϕ(s) = exp(2s). Thus

3t1b̃s+ σeκb̃2ϕ = 0

Thus σ = t1 = 0. By the same way, from (5.8), we get tA = 0. Therefore

θ = σ = 0 and thus Ric = 0. □

Now, lets to prove Theorem 1.3.

Proof of Theorem 1.3: We suppose that b̃ ̸= 0. Using ti = σ = 0, from the

Eq. (5.5), it follows that, there exists a function ξ := ξ(s) such that

c2κAκB + c7κAB = ξ(s)δAB . (5.9)

For A ̸= B, Eq. (5.9) reduced to

c2κAκB + c7κAB = 0. (5.10)
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Multiplying (5.10) by 16A3
1A

4
2 and using Maple program, one can see that

192(2− n)κABs
18 − 16

[
(2− n)(3κAκB − 62κAB) + 6κABn

]
s17

+N16s
16 + · · ·+N0 = 0,

where N0, . . . ,N16 are finctions of κA, κB , κAB . It follows that

κAB = κAκB = 0, (A ̸= B).

Since F is Ricci flat, (5.6) becomes to

(2c2s+ c3b̃
2)κ1κA + (c5b̃

2 + 2c7s)κ1A = 0. (5.11)

Multiplying (5.11) with 4A1A
4
2 and by Maple program, we get

96(n− 2)κ1As
16 − 8[(n− 2)(38κ1A + 3κ1κA)− 6κ1A]s

15

+ P14s
14 + · · ·+ P0 = 0. (5.12)

From (5.12), we have that

κ1A = κ1κA = 0 (5.13)

Now, we prove that κ1 = κA = 0. By multiple (5.5) in 16A3
1A

4
2(b̃

2 − s2) and

use Maple program we get

192(n− 2)(κ̄00 − κ11ᾱ
2)s20 − 16

[(
62(n− 2)− 3

)
(κ̄00 − κ11ᾱ

2)

+ 3(n− 2)(κ̄20 − κ21ᾱ
2)
]
s19 +M18s

18 + · · ·+M0 = 0, (5.14)

where Mi, (0 ≤ i ≤ 18) are polynomials of κ1, κ11, κ̄0, κ̄00.

From (5.14), we have

κ̄20 − κ21ᾱ
2 = 0 (5.15)

From (5.13) and (5.15), it follows that κ1 = κA = 0. Thus κ is a constant and

therefore F is a locally Minkowski metric.
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