| 
		
1. P. Bahmandoust and D. Latifi, Naturally reductive homogeneous (α, β)- spaces,Int. J.Geom. Methods Mod. Phys. 17 (8), (2020), 2050117.
2. D. Bao, S. S. Chern, Z. Shen, An introduction to Riemann-Finsler geometry, SpringerVerlag, NEWYORK,(2000).3. M. Ebrahimi and D. Latifi, On flag curvature and homogeneous geodesics of left invariantRanders metrics on the semi-direct product a ⊕p r, Journal of Lie Theory, 29, (2019),
 619-627.
4. D. Latifi, Homogeneous geodesics in homogeneous Finsler spaces, J. Geom. Phys. 57,(2007), 14211433.
5. D. Latifi, A. Razavi, On homogeneous Finsler spaces, Rep. Math. Phys, 57, (2006) 357-366. Erratum: Rep. Math. Phys. 60, (2007), 347.
6. D. Latifi, Bi-invariant Randers metrics on Lie groups, Publ. Math. Debrecen., 76 1-2,(2010), 219226.
7. D. Latifi and M. Toomanian, Invariant naturally reductive Randers metrics on homogeneous spaces, Math Sci., 6 63, (2012).8. D. Latifi, Bi-invariant (α, β)- metrics on Lie groups, Acta Universitatis Apulensis 65,(2021), 121-131.
9. D. Latifi, On generalized symmetric square metrics, Acta Universitatis Apulensis, 68,(2021), 63-70.
10. M. Matsumoto, Theory of Finsler spaces with (α, β)-metric, Rep. Math. Phys. 31, (1992),43-83.
11. M. Parhizkar and D. Latifi, On the flag curvature of invariant (α, β)- metrics, Int.J.Geom. Methods Mod. Phys., 13, (2016), 1650039, 1-11.
12. M. Parhizkar and D. Latifi, On invariant Matsumoto metrics, Vietnam J. Math., 47,(2019), 355365.
13. T. P¨uttmann, Optimal pinching constants of odd dimensional homogeneous spaces, Invent. Math., 138, (1999), 631684.14. M. L. Zeinali, On generalized symmetric Finsler spaces with some special (α, β) -metrics,Journal of Finsler Geometry and its Applications, 1, No. 1, (2020), 45-53.
15. M. L. Zeinali, Some results in generalized symmetric square-root spaces, Journal ofFinsler Geometry and its Applications, 3, No. 2, (2022), 13-19
 |