تعداد نشریات | 27 |
تعداد شمارهها | 364 |
تعداد مقالات | 3,223 |
تعداد مشاهده مقاله | 4,740,377 |
تعداد دریافت فایل اصل مقاله | 3,237,901 |
تحلیل منحنی رخنة آلایندة باکتریایی در شرایط کشت چمن در ستون خاک با اندازة کود گاوی مختلف | ||
مدل سازی و مدیریت آب و خاک | ||
مقاله 11، دوره 4، شماره 2، 1403، صفحه 75-88 اصل مقاله (1.04 M) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22098/mmws.2023.12529.1247 | ||
نویسندگان | ||
یاشار جهاندیده1؛ سید حسن طباطبائی* 2؛ مهرنوش دهقانیان3 | ||
1دانشآموختة کارشناسی ارشد، گروه مهندسی آب، دانشکدة کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران | ||
2استاد، گروه مهندسی آب، دانشکدة کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران | ||
3دانشآموختة دکتری، گروه مهندسی آب، دانشکدة کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران | ||
چکیده | ||
یکی از معمولترین روشها برای اصلاح، غنیسازی خاک و کمک به رشد گیاهان استفاده از کودهای دامی است. هدف پژوهش حاضر بررسی اثر اندازة ذرات کود و کشت چمن بر انتقال باکتری در ستون خاک و میزان آبشویی کود در حضور باکتری تحت شرایط کشت چمن است. برای این منظور تیمارهای کود گاوی با چهار قطر دو، یک، 5/0 و 25/0 میلیمتر انتخاب شدند. آزمایش انتقال باکتری ایشریشیاکولی در ستونهای PVC به ارتفاع 350 و قطر 160 میلیمتر انجام شد. مقدار کود مصرفی روی سطح ستونها با مقیاس 36 تن در هکتار انتخاب شد. چمن تهیه شده با ارتفاع پنج سانتیمتر روی سطح ستونهای خاک قرار داده شد. ستونهای خاک، در مدت دو هفته هر دو روز آبیاری و پس از آن، آبشویی ستونها تا خروجی زهاب هفت حجم منفذی انجام شد. میزان غلظت باکتری ایشریشیاکولی در زهاب جمعآوری شده به روش شمارش زنده اندازهگیری شد. نتایج نشان داد که در تیمارهای بدون کشت چمن، میزان انتقال باکتری در تیمار دانهبندی دو میلیمتر نسبت به سایر تیمارها بیشتر بود. حداکثر غلظت نسبی باکتری (C/C0) در ذرات کود با قطر 25/0 میلیمتر نسبت به قطر کود یک و دو میلیمتر کمتر و با تأخیر نسبت به ذرات درشتتر کود مشاهده شد. متوسط بیشینة غلظت نسبی باکتری ایشریشیاکولی (C/C0) در شرایط با و بدون کشت در تیمارهایی با اندازة قطر 25/0 و 5/0 میلیمتر (72/0 و 81/0) کمتر از ذرات کود با قطر یک و دو (95/0 و 91/0) میلیمتر شد. کاشت چمن میزان انتقال باکتری را سرعت بخشید. حداکثر غلظت نسبی باکتری (C/C0) در تیمارهای بدون کشت چمن و در قطرهای دو، یک، 5/0 و 25/0 بهترتیب در PV6/0،PV7/0، PV6/0 و PV9/0 برابر حجم منفذی رخ داد. این مقادیر در تیمارهای با کشت چمن بهترتیب برابر با PV 7/0، PV0/1، PV9/0 و PV0/1 شد. بر اساس نتایج در صورتیکه هدف کاهش انتقال باکتری به اعماق خاک باشد باید از ذرات کود 25/0 و 5/0 میلیمتر استفاده نمود و اگر هدف تأخیر انداختن انتقال باکتری به اعماق خاک باشد میتوان از اندازة ذرات کود یک و دو میلیمتر استفاده کرد. کشت گیاه چمن سبب افزایش باکتری انتقال یافته شد. | ||
کلیدواژهها | ||
اندازه ذرات؛ باکتری ایشریشیاکولی؛ حجم منفذی؛ کود گاوی؛ کشت چمن | ||
مراجع | ||
References Akhavan, S., Ebrahimi, S., Navabian, M., Shabanpour, M., Mojtahedi, A., Movahedi & Naeini, A. (2021). Transmission and retention status of the contamination index (Escherichia Coli) with different levels of salinity in the saturated column. Journal of Environmental Science and Technology, 23(6), 71-83. doi: 10.30495/jest.2022.28580.3736. [In Persian] AliPour Shahani, M., Farkhian Firouzi, A., Motamedi, H., & Karaei, A. (2015). The role of growth and decay of corn plant roots in the transmission of Escherichia coli bacteria in soil under saturated flow conditions. Journal of Water and Soil Sciences, 19(71), 163-176. [In Persian] Banks, M.K., Yu, W., & Govindaraju, R.S. (2003). Bacterial adsorption and transport in saturated soil columns. Journal of Environmental Science and Health, Part A, 38(12), 2749-2758. doi:10.1081/ESE-120025828 Beretta, A.N., Silbermann, A.V., Paladino, L., Torres, D., Kassahun, D., Musselli, R., & Lamohte, A.G. (2014). Soil texture analyses using a hydrometer: modification of the Bouyoucos method. Ciencia e Investigación Abu-Ashour, J., Joy, D. M., Lee, H., Whiteley, H. R., & Zelin, S. (1994). Transport of microorganisms through soil. Water, air, and soil pollution, 75, 141-158. Agraria, 41(2), 263-271. doi: 10.4067/s0718-16202014000200013 Disparte, A.A. (1987). Effect of root mass density on infiltration among four Mediterreanean dryland forages and two irrigated forage legumes (Doctoral dissertation, University of California, Riverside). doi:10.1016/S0016-7061(03)00091-0 Foppen, J.W.A., & Schijven, J.F. (2006). Evaluation of data from the literature on the transport and survival of Escherichia coli and thermotolerant coliforms in aquifers under saturated conditions. Water Research, 40(3), 401-426. doi:10.1016/j.watres.2005.11.018 Horneck, D.A., Sullivan, D.M., Owen, J.S., & Hart, J.M. (2011). Soil test interpretation guide. Report number: EC1478, Oregon Cooperative Extension Jamieson, R.C., Gordon, R.J., Sharples, K.E., Stratton, G.W., & Madani, A. (2002). Movement and persistence of fecal bacteria in agricultural soils and subsurface drainage water: A review. Canadian Biosystems Engineering, 44(1), 1-9. Jury, W.A., & Horton, R. (2004). Soil physics. John Wiley & Sons publication. 384 pages. Klute, A., & Dirksen, C. (1986). Hydraulic conductivity and diffusivity: Laboratory methods. Methods of soil analysis: Part 1 physical and mineralogical methods, 5, 687-734. doi:10.2136/sssabookser5.1.2ed.c28. Leininger, D.J., Roberson, J.R., & Elvinger, F. (2001). Use of eosin methylene blue agar to differentiate Escherichia coli from other gram-negative mastitis pathogens. Journal of veterinary diagnostic investigation, 13(3), 273-275. Li, X., Xu, H., Gao, B., Sun, Y., Shi, X., & Wu, J. (2017). Retention and transport of PAH-degrading bacterium herbaspirillum chlorophenolicum FA1 in saturated porous media under various physicochemical conditions. Water, Air, & Soil Pollution, 228(7), 1-12. Macler, B.A., & Merkle, J.C. (2000). Current knowledge on groundwater microbial pathogens and their control. Hydrogeology Journal, 8(1), 29. doi:10.1007/PL00010972. Mamun, A.A. (2022). Characterization of water flow and solute transport driven by preferential flow in soil vadose zone. Doctor of Philosophy, Environmental Engineering and Earth Sciences, Clemson University. Mawdsley, J.L., Bardgett, R.D., Merry, R.J., Pain, B.F., & Theodorou, M.K. (1995). Pathogens in livestock waste, their potential for movement through soil and environmental pollution. Applied soil ecology, 2(1), 1-15. doi:10.1016/0929-1393(94)00039-A. Maneshdavi, M., Jafarnejadi, A.R., Sayyad, G.A., Shirani, H. (2015). Inverse modeling of E.coli mobility through the soil by HYDRUS-1D code using equilibrium and non-equilibrium equations. Journal of Irrigation Sciences and Engineering, 38(3), 105-115. doi: 10.22055/jise.2015.11478. [In Persian] Morales, V.L., Parlange, J.Y., & Steenhuis, T.S. (2010). Are preferential flow paths perpetuated by microbial activity in the soil matrix? A review. Journal of Hydrology, 393(1-2), 29-36. doi:10.1016/j.jhydrol.2009.12.048 Morianou, G., Kourgialas, N.N., Karatzas, G.P., (2023). A review of HYDRUS 2D/3 Dapplications for simulations of water dynamics, root uptake and solute transport in tree crops under drip irrigation. Water, 15, 741. doi:10.3390/w15040741. Norouzi H.A. (2017). Studying the effect of cow manure granulation on the movement of Escherichia coli bacteria in the sand column under saturated flow. M.Sc. Thesis, Shahrekord University, Shahrekord Iran. [In Persian] Norouzi, H., Tabatabaei, S., Nourmahnad, N., Shirani, H. (2022). Effect of cow manure’s particle size on bacterial contamination transport in soil using attachment-detachment model under saturation condition. Iranian Journal of Irrigation & Drainage, 15(6),1382-1393. [In Persian] Reynolds, P.J., Sharma, P.R.A.M.O.D., Jenneman, G.E., & McInerney, M.J. (1989). Mechanisms of microbial movement in subsurface materials. Applied and Environmental Microbiology, 55(9), 2280-2286. doi:10.1128/aem.55.9.2280-2286.1989 Safadoust, A., Mahboubi, A.A., Mosaddeghi, M.R., Gharabaghi, B., Unc, A., Voroney, P., & Heydari, A. (2012). Effect of regenerated soil structure on unsaturated transport of Escherichia coli and bromide. Journal of Hydrology, 430, 80-90. doi:10.1016/j.jhydrol.2012.02.003 Sepehrnia, N., Memarianfard, L., Moosavi, A.A., Bachmann, J., Guggenberger, G., & Rezanezhad, F. (2017). Bacterial mobilization and transport through manure enriched soils: experiment and modeling. Journal of Environmental Management, 201, 388-396. doi:10.1016/j.jenvman.2017.07.009 Sepehrnia, N., Tabatabaei, S.H., Norouzi, H., Gorakifard, M., Shirani, H., & Rezanezhad, F. (2021). Particle fractionation controls Escherichia coli release from solid manure. Heliyon, 7(5), e07038. doi:10.1016/j.heliyon.2021.e07038. Shelden, M.C., & Munns R. (2023). Crop root system plasticity for improved yields in saline soils. Frontiers Plant Science 14. doi:10.3389/fpls.2023.1120583 Smucker, A.J.M., Richner, W., & Snow, V.O. (1995). Bypass flow via root-induced macropores (RIMS) in subirrigated agriculture. Stoddard, C.S., Coyne, M.S., & Grove, J.H. (1998). Fecal bacteria survival and infiltration through a shallow agricultural soil: timing and tillage effects. Journal of Environmental Quality, 27(6),1516-1523. doi:10.2134/jeq1998.00472425002700060031x Tabatabaei, S.H., Sepehrnia, N., Norouzi, H., Shirani, H., & Rezanezhad, F. (2022). Effects of solid manure particle fractionation on transport, retention, and release of Escherichia coli. Environmental Technology & Innovation, 25, 102086. doi:10.1016/j.eti.2021.102086 Toor, G.S., Condron, L.M., Di, H.J., & Cameron, K.C. (2004). Seasonal fluctuations in phosphorus loss by leaching from a grassland soil. Soil Science Society of America Journal, 68(4), 1429-1436. doi:10.2136/sssaj2004.1429 Van Elsas, J.D., Trevors, J.T., & Van Overbeek, L.S. (1991). Influence of soil properties on the vertical movement of genetically-marked Pseudomonas fluorescens through large soil microcosms. Biology and Fertility of soils, 10, 249-255 | ||
آمار تعداد مشاهده مقاله: 400 تعداد دریافت فایل اصل مقاله: 304 |