تعداد نشریات | 27 |
تعداد شمارهها | 364 |
تعداد مقالات | 3,223 |
تعداد مشاهده مقاله | 4,740,219 |
تعداد دریافت فایل اصل مقاله | 3,237,830 |
جذب نیترات از محلول آبی توسط زغالزیستی و زغالزیستی پوششدار آهن | ||
مدل سازی و مدیریت آب و خاک | ||
مقاله 5، دوره 4، شماره 1، 1403، صفحه 70-84 اصل مقاله (1.35 M) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22098/mmws.2023.12082.1203 | ||
نویسندگان | ||
لیلا ضامنی* 1؛ فردین صادق زاده2؛ بهی جلیلی3؛ محمد علی بهمنیار4 | ||
1کارشناسی ارشد/ گروه علوم خاک، دانشکدة علوم زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران | ||
2دانشیار/ گروه علوم خاک، دانشکدة علوم زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران | ||
3استادیار/ گروه علوم خاک، دانشکدة علوم زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران | ||
4استاد/ گروه علوم خاک، دانشکدةه علوم زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران | ||
چکیده | ||
در حال حاضر بسیاری از کشورها از جمله ایران با مشکل بالا بودن غلظت نیترات در آب آشامیدنی مواجه هستند، که مهمترین علت آن ورود روانابهای کشاورزی و فاضلابهای شهری و صنعتی به منابع آبی بهخصوص آبهای زیرزمینی است. اگر غلظت نیترات در آب آشامیدنی بیش از حد مجاز باشد (50 میلیگرم بر لیتر)، باعث ایجاد سمیت در آب میشود. تاکنون روشهای مختلفی برای حذف نیترات مطرح شده است، که اکثر آنها، پرهزینه است. بنابراین، هدف از این مطالعه استفاده از زغالزیستی بهعنوان جاذب ارزان قیمت جهت حذف نیترات از منابع آبی است. در این پژوهش از چهار نوع مادة خام کاه و پوستة برنج، باگاس نیشکر و خرده چوب نراد استفاده شد و زغالزیستی در دو شرایط دمایی 300 و 600 درجة سانتیگراد تولید شد. برای تعیین بهترین جاذب با حداکثر مقدار جذب نیترات، ابتدا تمام جاذبها در یک زمان ثابت (60 دقیقه) با غلظت اولیة 50 میلیگرم بر لیتر محلول نیترات تماس داده شد، سپس آزمایشهای سینتیک جهت تعیین زمان تعادل، pH بهینه و مقدار جاذب انجام گرفت. پس از تعیین جاذب با حداکثر جذب و شرایط بهینه، جاذب مورد نظر با کلریدآهن پوشش داده شد. ایزوترمهای جذب نیترات توسط بهترین زغالزیستی تعیین شد. نتایج نشان داد که از بین زغالزیستی موجود، کاه برنج در دمای 300 درجة سانتیگراد بیشترین توانایی جذب نیترات را داشت. حداکثر جذب نیترات با غلظت اولیة 50 میلیگرم بر لیتر در زمان تعادل 90 دقیقه، pH بهینه هفت و جرم جاذب 25/1 گرم بر لیتر، 23580 گرم بر کیلوگرم بهدست آمد. همچنین، فرآیند جذب نیترات، زغالزیستی کاه برنج 300 درجة سانتیگراد و زغالزیستی کاه برنج 300 درجة سانتیگراد پوششدار آهن با مدل خطی ایزوترم لانگمویر مطابقت داشت. حداکثر ظرفیت جذب نیترات برای دو تیمار زغالزیستی کاه برنج و زغالزیستی کاه برنج پوششدار آهن، بهترتیب 16/38، 66/43، میلیگرم بر گرم بهدست آمد. بر مبنای نتایج حاصل، میتوان اظهار نمود که پوششدار کردن زغالزیستی با آهن بهدلیل داشتن بار مثبت، مانند پل روی سطح زغالزیستی با بار منفی قرار گرفته، در نتیجه جذب نیترات را روی سطح زغالزیستی افزایش میدهد. | ||
کلیدواژهها | ||
ایزوترم جذب؛ زغالزیستی دارای پوشش آهن؛ سینتیک؛ نیترات | ||
مراجع | ||
References Afkhami, A., Madrakian, T., & Karimi, Z. (2007). The effect of acid treatment of carbon cloth on the adsorption of nitrite and nitrate ions. Journal of Hazardous Materials, 144, 427-431. doi: 10.1016/j.jhazmat.2006.10.062. Ahmad, M., Rajapaksha, A.U., Lim, J.E., Zhang, M., Bolan N., Mohan, D., Vithanage, M., Lee, S.S., & Ok, Y.S. (2014). Biochar as a sorbent for contaminant management in soil and water. Chemosphere, 99, 19-33. doi: 10.1016/j.chemosphere Alagha, O., Manzar, M.S., Zubair, M., Anil, I., Muazu, N.D., & Qureshi, A. (2020). Comparative adsorptive removal of phosphate and nitrate from wastewater using biochar-MgAl LDH nanocomposites: Coexisting anions effect and mechanistic studies. Nanomatrials, 10, 336. doi: 10.3390/nano10020336 Archna, S.K., & Sobti, R.H. (2012). Nitrate removal from ground water. Journal of Chemistry, 9(4), 1667- 1675. doi: 10.1155/2012/154616 Asada, T., Ishihara, S., Yamane, T.T., Toba, A.A., Yamada, A., & Oikawa, K. (2002). Scienc of bamboo charcoal:study on carbonizing temperature of bamboo charcoal and removal capability or harmrul gases. Journal of Health Science, 48, 473-479. doi: 10.1248/jhs.48.473 Beck, D.A. Johnson, G. R., & Spolek, G.A. (2011). Amending greenroof soil with biochar to affect runoff water quantity and quality. Environmental Pollution, 159, 2111-2118. doi: 10.1016/j.envpol.2011.01.022 Benham, B., Haering, K., Ling, E.J & Scott, J.P. (2011). Virinia household water quality program:nitrate in household water. Virginia Cooperative Extension, 442-659. Bhatnagar, A., & Sillanpaa, M. (2011). A review of emerging adsorbents for nitrate removal from water. Journal of Chemical Engineering, 168, 493-504. doi: 10.1016/j.cej.2011.01.103 Chandra, S., Medha, I., & Bhattacharya, J. (2020). Potassium-iron rice straw biochar composite for sorption of nitrate, phosphate, and ammonium ions in soil for timely and controlled release. Science of the Total Environment, 712, 136337. doi:10.1016/j.scitotenv.2019.136337 Chen, X., Chen, G., Chen, L., Chen, Y., Lehmann, J., McBride, B.M., & Hay, A.G. (2011). Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresource Technology, 102, 8877-8884. doi: 10.1016/j.biortech.2011.06.078 Dempster, D., Jones, D., & Murphy, D. (2012). Clay and biochar amendments decreased inorganic but not dissolved organic nitrogen leaching in soil. Australian Journal of Soil Research, 50, 216-221. doi:10.1071/SR11316 Fallah Tolekolai, S., Bahmanyar, M.A. & Sadeghzadeh, F. (2015). The effect of applying municipal soild waste compost and boichar on yield and concentration of some macro and micro nutrients in rice plant. MSc thesis, Sari Agricultural Sciences and Natural Resources University. [In persian] Fang, S.J., Ruzybayev, I., Shah,I., & Huang, C.P. (2016). The electrochemical reduction of nitrate over micro-architecturedmetal electrodes with stainless steel scaffold. Applied Catalysis B: Environmental, 180, 199-209. doi:10.1016 Fidel, R.B., Laird, D.A., & Spokas, K.A. (2018). Sorption of ammonium and nitrate to biochars is electrostatic and pH-dependent. Scientific Reports, 8(1), 17627. doi.org/10.1038/s41598-018-35534-w Hafshejani, L.D., Hooshmand, A., Naseri, A.A., Mohammadi, A.S., Abbasi, F., & Bhatnagar, A. (2016). Removal of nitrate from aqueous solution by modified sugarcane bagasse biochar. Ecological Engineering, 95, 101–111. doi:10.1016/j.ecoleng.2016.06.035 Harvey, O.R., Herbert, B.E., Rhue, R.D., & Kua, L. (2011). Metal interactions at the biochar-water interface:energetics and structure-sorption relationships elucidated by flow adsorption microcalorimetry. Journal of Environmental Science and Technology, 45, 5550-5556. doi: 10.1021/es104401h Hu, Q., Chen, N., Feng, C., & Hu, W.W. (2015). Nitrate adsorption from aqueous solution using granular chitosan-Fe3+ complex. Journal of applied surface science, 374, 1-9. doi: 10.2175/106143012x13418552642047 Huang, W., Li, M., Zhang,B., Feng, C., Lei, X., & Xu, B. (2013). Influence of operating conditions on electrochemical reduction of nitrate in groundwater, Water Environment, 85, 224–231. doi:10.1016/J.CEJ.2019.122375 Huang, Y., Lee, X., Grattieri, M., Yuan, M., Cai, R., Macazo, F.C., & Minteer, S.D., (2020). Modified biochar for phosphate adsorption in environmentally relevant conditions. Chemical Enineering Journal, 380, 122375. doi:10.1016/J.CEJ.2019.122375 Jensen, V.B., Darby, J.L., Seidel, C., & Gorman, C. (2012). Drinking Water Treatment for Nitrate. Technical Report, 6, 1-182. Joseph S.D., Camps-Arbestain M., Lin Y., Munroe P., Chia C.H., Hook J., van Zwieten L., Kimber S., Cowie A., Singh B. P., Lehmann J., Foidl N., Smernik R. J., and Amonette J. E. (2010). An investigation into the reactions of biochar in soil. Australian Journal of Soil Research, 48, 501-515. doi:10.1071/SR10009 Katal, R., Baei, M.S, Rahmati, H.T., & Esfandian, H. (2012). Kinetic, isotherm and thermodynamic study of nitrate adsorption from aqueous solution using modified rice husk. Journal of Industrial and Engineering Chemistry, 18, 295–302. doi: 10.1016/j.jiec.2011.11.035 Kameyama, S., Miyamoto, K., Shiono, T., & Shinogi, T.Y. (2012). Influence of sugarcane bagasse-derived Biochar application on nitrate leaching in calcaric dark red soil. Journal of Soil Science Society of America, 41, 1131-1137. doi:10.2134/jeq2010.0453 Kasozi, G. N., Zimmerman, N. R., Nkedi-kizza, P & Gao, B. (2010). Catechol and humic acid sorption onto a range of laboratory- produced black carbons (Biochars). Journal of Environmental Science and Technology, 44, 6189-6195. doi:10.1021/es1014423 Keeney, D.R., & Nelson, D.W. (1982). N-inorganic forms Methods of Soil Analysis. Part 2. Eds. A L Page. R H Miller and D R Keeney. Agronomy. 9. pp 643-698. Khani, A., & Mirzaei, M. (2008). Comparative study of nitrate removal from aqueous solution using powder activated carbon and carbon nanotubes. russia, 2nd international IUPAC Conference on Green Chemistry: pp. 14-19. Kilpimaa, S., Runtti, H., Kangas, T., Lassi,, U., & Kuokkanen, T. (2015). Physical activation of carbon residue from biomass gasification: Novel sorbent for the removal of phosphates and nitrates from aqueous solution. Journal of Industrial and Engineering Chemistry, 21, 1354-1364. doi:10.1016/j.jiec.2014.06.006 Kim, W.K., Shim, T., Kim, Y.S., Hyun, S., Ryu, C., Park, Y.K., & Jung, J. (2013). characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthus at different pyrolytic temperatures. Bioresource Technology, 138, 266-270. doi:10.1016/j.biortech.2013.03.186 Kumar, S., Masto, R.E., Ram, L.C., Sarkar, P., George, J., & Selvi V.A. (2013). Biochar preparation from Parthenium hysterophorus and its potential use in soil application. Journal of Ecological Engineering, 55, 67-72. doi:10.1016/j.ecoleng.2013.02.011 Lehmann, J., DaSilva, J.P., Steiner, C., Nehls, T. Zech, W., & Glaser, B. (2003). Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant and Soil, 249, 343-357. doi:10.1023/A:1022833116184 Lehman, J., & Joseph, S. (2009). Biochar for environmental management. science and technology. Earthscan Publishes, 416 pages. Lee, J., Sarmah, A.K. & Kwon, E.E. (2019). Chapter 1—production and formation of biochar. In: Ok, Y.S., Tsang, D.C.W., Bolan, N., & Novak, J.M. (Eds.), Biochar from Biomass and Waste. Elsevier, pp. 3–18. doi:10.1016/B978-0-12-811729-3.00001-7 Marcinczyk, M., & Oleszczuk, P. (2022). Biochar and engineered biochar as slow- and controlled-release fertilizers. Journal of Cleaner Production, 339, 130685. doi:10.1016/j.jclepro.2022.130685 Mohan, D., Sharma, R., Singh V.K., Steele, P., & Pittman, C.U. (2011). Fluoride removal from water using bio-char, a green waste, low-cost adsorbent: equilibrium uptake and sorption dynamics modeling. Journal of Industrial and Engineering Chemistry Research – American, 51, 900-914. doi:10.1021/ie202189v Mohan, D., Sarswat, A., Ok, Y.S. & Pittman, C.U. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – a critical review. Bioresour Technol, 160, 191–202. doi:10.1016/j.biortech.2014.01.120 Mohammadi, H., Yazdanbakhsh, A.R., Sheykh Mohammadi, A., Bonyadinejad, GH. R., Alinejad, A.A., & ghanbari, GH. (2011). Investigation of nitrite and nitrate in drinking water of regions under surveillance of Shahid Beheshti University of medical sciences in Tehran Province, Iran. Journal of Health System Research, 7(6), 782-789 [in Persian] Nabi Bidhendi, G.R., Nasrabadi, T., Sharif Vaghefi, H. R., & Hoveidi, H. (2006). Biological nitrate removal from water resources. Journal of Environmental Science Technology, 3, 281-287. doi:org/10.1007/BF03325935 Nabizadeh, S., Sadeghzadeh, F., Jalili, B., & Emadi M. (2018). Adsorption of methylene blue using biochar from aqueous solutions. Iranian Journal of Soil and Water Research, 49(1), 51-57. doi: 10.22059/ijswr.2018.212516.66711. [in Persian] Nobaharan, K., Bagheri, N.S., Asgari, L.B. & Hullebusch, E.D. (2021). Phosphorus removal from wastewater: the potential use of Biochar and the key controlling factors, Review. water, 13(4), 517. doi.org/10.3390/w13040517 Ogata, F., Imai, D., & Kawasak, N. (2015). Adsorption of nitrate and nitrite ions onto carbonaceous material produced from soybean in a binary solution system. Journal of Environmental Chemical Engineering, 3, 155-161. doi:10.1016/j.jece.2014.11.025 Ozturk, N., & Bektas, T.E. (2004). Nitrate removal from aqueous solution by adsorption onto various materials. Journal of Hazardous Materials, 112, 155-162. doi:10.1016/ Phan, P.T., Nguyen, T.A., Nguyen, N.H., & Nguyen, T.T. (2020). Modelling approach to nitrate adsorption on triamine-bearing activated rice husk ash. Engineering and Applied Science Research, 47(2), 190-197. doi:10.14456/easr.2020.21 Samsuri, W.A., Sadeghzadeh, F., & Shebardden, J.B. (2013). Adsorption of as (III) and as (V) by Fe-coated biochars and biochars produced from empty fruit bunch and rice husk. Journal of Environmental Chemical Engineering, 1, 981-988. doi:10.1016/j.jece.2013.08.009 Shafie, S., Salleh, M., Hang, L.L., Rahman, M., & Ghani, W. (2012). Effect of pyrolysis temperature on the biochar nutrient and water retention capacity. Journal of Purity, Utility Reaction and Environment, 1(6), 293-307. doi:10.1016/j.jaap.2022.105728 Shakoor, M.B., Ye, Z.L., & Chen, S. (2021). Engineered biochars for recovering phosphate and ammonium from wastewater: A review. Science of the Total Environment,779, 146240. doi: 10.1016/j.scitotenv.2021.146240 Sharma, S.K., & Sobti, R.h. (2012). Nitrate removal from ground water. Journal of Chemistry, 9, 1667-1675. doi:10.1155/2012/154616 Singh, B., Singh, B.P., & Cowie, A.L. (2010). Characterisation and evaluation of biochars for their application as a soil amendment. Australian Journal of Soil Research, 48(7), 516-525. doi:org/10.1071/SR10058 Song, W. & Guo, M. (2012). Quality variation of poultry litter biochar generated at different pyrolysis temperatures. Journal of Analytical Applied Pyrolysis, 94, 138-145. doi.org/10.1016/j.jaap.2011.11.018 Song, K., Suenaga, T., Harper, W.F., Hori, T., Riya, S., Hosomi, M., & Terada, A. (2015). Effects of aeration and internal recycle flow on nitrous oxide emissions from a modified Ludzak-Ettinger process fed with glycerol. Environment Science Pollution Research, 22 (24), 19562–19570 . doi: 10.1007/s11356-015-5129-8 Sun, L., Wan, S. & Luo, W. (2013). Biochars prepared from anaerobic digestion residue, palm bark, and eucalyptus for adsorption of cationic methylene blue dye: Characterization, equilibrium, and kinetic studies. Bioresources Technology, 140, 406-13. doi: 10.1016/j.biortech.2013.04.116 Tan, X., Liu, Y., Zeng, G., Wang X., Hu, X., & Gu, Y., & Yang, Z. (2015). Application of biochar for the removal of pollutants from aqueous solutions. Journal of Chemosphere, 125, 70-147. doi:10.1016/j.chemosphere.2014.12.058 USDA., & NRCS. (2007). Statistix 8 user guider for the plant material program, version, 2, 1-8. Wang, Y., Gao, B., Yue, W.W., & Yue, Q.Y. (2007). Adsorption kinetics of nitrate from aqueous solutions onto modified wheat residue. Physicochemical and Engineering Aspects, 308, 1-5. doi: 10.1016/j.colsurfa. Wang, B., Lehmann, J., Hanley, K., Hestrin, R., & Enders A. (2015a). Adsorption and desorption of ammonium by maple wood biochar as a function of oxidation and pH. Chemosphere, 138, 120-126. doi:10.1016/j.chemosphere. Wang, Z., Guo H., Shen F., Yang, G., Zhang, Y., Zeng Y., Wang, L., Xiao, H., & Deng, S. (2015b). Biochar produced from oak sawdust by Lanthanum (La)-involved pyrolysis for adsorption of ammonium (NH4+ ), nitrate (NO3-), and phosphate (PO43-). Chemosphere, 119, 646–653. doi: 10.1016/j.chemosphere. WHO. (2004). Guidelines for drinking water quality. World Health Organization, 1(3),417-420 Xu, G., Lv, Y., Sun, J., Shao, H., & Wei, L. (2012). Recent advances in biochar applications in agricultural soils: benefits and environmental implications. Clean – Soil, Air, Water, 40, 1093-1098. doi:10.1002/clen.201100738 Yadava, A.K., Abbassia, R., Guptac A., & Dadashzad, A. (2013). Removal of fluoride from aqueous solution and groundwater by wheat straw, sawdust and activated bagasse carbon of sugarcane. Ecological Engineering, 52, 211-218. doi:10.1016/j.ecoleng.2012. Yao, Y., Gao, B., Zhang M., Inyan M.,. & Zimmerman, A. (2012). Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere, 89, 1467-147. doi: 10.1016/j.chemosphere.2012.06.002 Yekzaban, A., Moosavi, A.A., Sameni, A., & Rezaei, M. (2023). Effect of palm leaf and lemon peel biochar on some physical and mechanical properties of a sandy loam soil. Water and Soil Management and Modeling, 3(1), 69-83. doi: 10.22098/MMWS.2022.11264.1111. [In Persian] Yin, Q., Ren, H., Wang, R., & Zhao, Z. (2018a). Evaluation of nitrate and phosphate adsorption on Al-modified biochar: influence of Al content. Science of the Total Environment, 631–632, 895–903. doi:10.1016/j.scitotenv.2018.03.091 Yin, Q., Wang, R., & Zhao, Z. (2018b). Application of Mg–Al-modified biochar for simultaneous removal of ammonium, nitrate, and phosphate from eutrophic water. Jornal of Cleaner Production, 176, 230–240. doi:10.1016/j. Zhang, M., Song, G., Gelardi, D.L., Huang, L., Khan, E., Maˇsek, O., Parikh, S.J., & Ok, Y.S., (2020). Evaluating biochar and its modifications for the removal of ammonium, nitrate, and phosphate in water. Water Research, 186, 116303. doi:10.1016/j.watres.2020.116303
| ||
آمار تعداد مشاهده مقاله: 598 تعداد دریافت فایل اصل مقاله: 375 |