- 1. P. L. Antonelli, R. S. Ingarden and M. Matsumoto, The theory of sprays and Finsler
Spaces with Applications in Physics and Biology, Kluwer Academic Publishers, (1993).
- 2. M. Berger, Les vari´et´es Riemanniennes 1/4-pinc´ees, Ann. Scuola Norm. Sup. Pisa.
14(1960), 161-170.
- 3. L. Berwald, Uber Finslersche und Cartansche geometrie IV, Projek-tivkrmmung all- ¨
gemeiner affiner R¨aume und Finslersche R¨aume skalarer Kr¨ummung, Ann. Math. 48(1947), 755-781.
- 4. L. Berwald, Uber die ¨ n-dimensionalen Geometrien konstanter Kr¨ummung, in denen die
Geraden die k¨urzesten sind. Math. Z. 30(1929), 449-469.
- 5. R. Bryant, Finsler structures on the 2-sphere satisfying K = 1, Finsler Geometry, Contemporary Mathematics, Amer. Math. Soc, Providence, RI. 196(1996), 27-42.
- 6. X. Cheng and Z. Shen, Randers metrics with special curvature properties, Osaka. J.
Math. 40(2003), 87-101.
- 7. S. S. Chern and Z. Shen, Riemann-Finsler Geometry, Nankai Tracts in Mathematics,
(2005).
- 8. M. Crasmareanu, New tools in Finsler geometry: stretch and Ricci solitons, Math. Rep.,
Buchar. 16(66), 1(2014), 83-93.
- 9. P. Funk, Uber Geometrien, bei denen die Geraden die K¨urzesten sind ¨ , Math. Ann.
101(1929), 226-237.
- 10. L. Huang and X. Mo, On spherically symmetric Finsler metrics of scalar curvature, J.
Geom. Phys. 62(2012), 2279-2287.
- 11. L. Huang and X. Mo, Projectively flat Finsler metrics with orthogonal invariance, Ann.
Polon. Math. 107(2013), 259-270.
- 12. W. Klingenberg, Uber Riemannsche Mannigfaltigkeiten mit positiver Kr¨ummung ¨ , Comment. Math. Helv. 35(1961), 47-54.
- 13. X. Mo and L. Zhou, A class of Finsler metrics with bounded Cartan torsion, Canad.
Math. Bull. 53(2010), 122-132.
- 14. H. B. Rademacher, A sphere theorem for non-reversible Finsler metrics, Math. Ann.
328(2004), 373-387.
- 15. H.E. Rauch, A contribution to differential geometry in the large, Ann. of Math. 54(1951),
38-55.
- 16. S. F. Rutz, Symmetry in Finsler spaces, Finsler Geometry, Contemporary Mathematics,
Amer. Math. Soc, Providence, RI. 196(1996), 289-300.
- 17. Z. Shen, Finsler metrics with K = 0 and S = 0, Canadian J. Math. 55(2003), 112-132.
- 18. Z. Shen, Lectures on Finsler Geometry, World Scientific, Singapore, 2001.
- 19. A. Tayebi and M. Barzegari, Generalized Berwald spaces with (α, β)-metrics, Indagationes Mathematicae, 27(2016), 670-683.
- 20. A. Tayebi and Najafi, Classification of 3-dimensional Landsbergian (α, β)-mertrics, Publ.
Math. Debrecen, 96(2020), 45-62.
- 21. A. Tayebi and M. Razgordani, On conformally flat fourth root (α, β)-metrics, Differ.
Geom. Appl. 62(2019), 253-266.
- 22. A. Tayebi and M. Razgordani, Four families of projectively flat Finsler metrics with
K = 1 and their non-Riemannian curvature properties, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Math. RACSAM, 112(2018), 1463-1485.
- 23. L. Zhou, Spherically symmetric Finsler metrics in Rn, Publ. Math. Debrecen. 80(2012),
67-77.
- 24. L. Zhou, Projective spherically symmetric Finsler metrics with constant flag curvature
in Rn, Geom. Dedicata. 158(2012), 353-364.
|