تعداد نشریات | 27 |
تعداد شمارهها | 364 |
تعداد مقالات | 3,222 |
تعداد مشاهده مقاله | 4,739,456 |
تعداد دریافت فایل اصل مقاله | 3,237,579 |
اثر شیوههای جنگلداری بر تغییرات ویژگیهای زیستی خاک (مطالعه موردی: جنگلهای راش اسالم) | ||
مدل سازی و مدیریت آب و خاک | ||
مقاله 2، دوره 3، شماره 4، 1402، صفحه 16-28 اصل مقاله (1.07 M) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22098/mmws.2022.11641.1149 | ||
نویسندگان | ||
هدی اسفندیاری1؛ کیومرث سفیدی* 2؛ اکبر قویدل3؛ محمد اسماعیل پور4؛ بیت الله امان زاده5؛ سید محمدمعین صادقی6 | ||
1دانشآموخته کارشناسی ارشد/ گروه علوم و مهندسی جنگل، دانشکدۀ کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران | ||
2دانشیار/ گروه علوم و مهندسی جنگل، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران | ||
3دانشیار/، گروه علوم خاک، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران | ||
4استادیار/ دانشکده کشاورزی و منابع طبیعی اهر، دانشگاه تبریز، اهر، ایران | ||
5استادیار/ مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان گیلان، رشت، ایران | ||
6دانش آموخته دکتری/ اداره کل منابع طبیعی و آبخیزداری استان آذربایجان غربی، ارومیه، ایران | ||
چکیده | ||
در مدیریت مناطق جنگلی حفظ عملکرد خاک بسیار مهم است. بنابراین، حفظ سلامت خاک برای مدیریت پایدار جنگل حیاتی است. بهمنظور بررسی اثرپذیری شاخصهای زیستی خاک از روشهای مدیریتی مختلف جنگل، سه قطعه با سابقه مدیریتی متفاوت در سری دو و سه جنگل راش اسالم استان گیلان انتخاب شد. قطعات انتخابشده شامل قطعه شاهد، قطعه با سابقه اجرای طرح در میانمدت حداکثر 20 سال تحت مدیریت شیوه گزینشی و قطعه با سابقه اجرای طرح بلندمدت بیش از 50 سال تحت مدیریت شیوه پناهی بود. 15 نمونه در هر قطعه با روش منظم و تصادفی، از نزدیکترین درخت به مرکز تقاطع اضلاع شبکه نمونهبرداری، از عمق 0-30 سانتیمتری خاک برداشت شد. در هر یک از نمونهها، تنفس پایه، تنفس برانگیخته، کربن زیتوده میکروبی و جمعیت ریزجانداران اندازهگیری، شاخص بهره میکروبی، بهرة متابولیک، کربن آلی، هدایت الکتریکی و اسیدیته خاک اندازهگیری شد. نتایج نشان داد که اختلاف معناداری بین سه قطعه از لحاظ کربن آلی، بهره میکروبی، هدایت الکتریکی و اسیدیته وجود ندارد. تنفس پایه، تنفس برانگیخته، جمعیت ریزجانداران، بهره متابولیک و کربن زیتوده میکروبی اختلاف معناداری را در سه قطعه نشان دادند. بیشترین میزان تنفس پایه، تنفس برانگیخته، جمعیت ریزجانداران و کربن زیتوده میکروبی در قطعه با شیوه پناهی و کمترین آن در قطعه گزینشی بهدست آمد. در این پژوهش، بیشترین میزان بهرة متابولیک در قطعه گزینشی و کمترین آن در قطعه با شیوه پناهی محاسبه شد. نتایج همبستگی شاخصهای زیستی خاک جنگل نشان میدهد ریزجانداران خاک همبستگی مثبت معناداری در سطح احتمال یک درصد با زیتوده میکروبی دارد. آگاهی از اثرپذیری ویژگیهای زیستی خاک از اعمال شیوههای مختلف پرورش جنگل و دخالتهای مختلف انسانی، امکان انتخاب شیوههای مناسب با شرایط رویشگاهی را فراهم میآورد. در عین حال، تعیین شدت دخالتهای پرورشی در تودههای جنگل بر اساس پیشبینی اثرات آن بسیار سودمند خواهد بود. | ||
کلیدواژهها | ||
ریزجانداران؛ کربن زیتوده میکروبی؛ بهره متابولیک بهره میکروبی | ||
مراجع | ||
الغوثی، دنیا، لطفعلیان، مجید، نصیری، مهران، و اسماعیلپور، محمد (1399). اثر خاکستر مازاد مقطوعات در بهبود برخی خواص خاک شیروانی خاکریزی جادة جنگلی. پژوهش و توسعة جنگل، 6(3)، 367-380. doi:10.30466/jfrd.2020.120897 امانزاده، بیتاله، ثاقبطالبی، خسرو، فدایی خشکبیجاری، فرهاد، خانجانی شیراز، بابا، و همتی، ارسلان (1390). ارزیابی توزیعهای مختلف آماری در برآورد پراکنش تعداد در طبقات قطری تودههای راش شفارود در مراحل مختلف تحولی جنگل. تحقیقات جنگل و صنوبر ایران، 19(2)، 254-267. doi:10.22092/ijfpr.2011.107567 آملیکندوری، علیرضا، ابراری واجاری، کامبیز، فیضیان، محمد، و دی آیوریو، آنتونینو (1400). ارتباط ویژگیهای ساختاری درختان راش و خصوصیات زیستی خاک با شاخص رقابت در روشنههای تاجپوشش در تودة جنگلی راش. بومشناسی جنگلهای ایران، ۹، 80-74. doi:10.52547/ifej.9.18.74 رفیعی، فاطمه، حبشی، هاشم، رحمانی، رامین، و ثاقب طالبی، خسرو (1396). تغییرات زمانی کربن زیتودۀ میکروبی و سهم میکروبی در تودۀ راش آمیخته (مطالعۀ موردی: طرح جنگلداری دکتر بهرامنیا-گرگان). نشریة جنگل و فرآوردههای چوب، 70(4)، 659-670. doi:10.22059/jfwp.2017.243209.869 شالیکار، ا. (1387). بررسی تغییرپذیری مکانی برخی از شاخصهای کیفی خاک در خاکورزی متناوب مزارع برنج. پایاننامة کارشناسی ارشد، دانشگاه علوم کشاورزی و منابع طبیعی گرگان. علیاصغرزاده، ناصر (1390). روشهای آزمایشگاهی در بیولوژی خاک. انتشارات دانشگاه تبریز، 546 صفحه. کوچ، یحیی، و احسانی، سمیه (1399). تأثیر کاربریهای مختلف بر شاخصهای نوین کیفیت خاک در منطقة البرز مرکزی. بومشناسی جنگلهای ایران، ۸(۱۶)، ۶۰-71. doi:10.52547/ifej.8.16.60 References Alghosi, D., Lotfalian, M., Nasiri, M., & Esmaeilpour, M. (2020). Evaluation of the effects of logging residual ash for improving some soil properties of forest road fill slope. Forest Research and Development, 6(3), 367-380. doi:10.30466/jfrd.2020.120897 [In Persian] Ali Asgharzadeh, N. (2010). Laboratory methods of soil biology. Tabriz University Publication, 546 pages (in Persian). Amanzadeh, B., Sahib Talibi, KH., Fedaei Khashbijari, F., Khanjani Shiraz, B., & Hemmati, A. (2011). Evaluation of various statistical distributions in estimating the distribution of number in diameter classes of Shafarood beech masses in different stages of forest development. Journal of Forest and Poplar Research, 19(2), 254-267. doi:10.22092/ijfpr.2011.107567 [In Persian] Amolikondori, A., Abrari Vajari, K., Feizian, M., & Diiorio, A. (2021). Interactions between structural properties beech tree and soil biology with competition index in canopy gaps in Beech stand. IFEJ, 9, 74-80. doi:10.52547/ifej.9.18.74 [In Persian] Gartzia-Bengoetxea, N., Kandeler, E., De Arano, I., & Arias-González, A. (2016). Soil microbial functional activity is governed by a combination of tree species composition and soil properties in temperate forests. Applied Soil Ecology, 100, 57-64. doi:10.1016/j.apsoil.2015.11.013 Ge, T., Wei, X., Bahar, S., Zhu, Z., Hu, Y., Kuzyakov, Y., Jones, D., & Wu, J. (2017). Stability and dynamics of enzyme activity patterns in the rice rhizosphere: Effects of plant growth and temperature. Soil Biology and Biochemistry, 113, 108-115. doi:10.1016/j.soilbio.2017.06.005 Guo, P., Wang, C., Jia, Q., Wang, Q., Han, G., & Tian, X. (2011). Response of soil microbial biomass and enzymatic activities to fertilizations of mixed inorganic and organic nitrogen at a subtropical forest in East China. Plant and Soil, 338, 355 – 366. doi:10.1007/s11104-010-0550-8 Guo, X., Chen, H., Meng, M., Biswas, S.R., Ye, L., & Zhang, J. (2016). Effects of land use change on the composition of soil microbial communities in a managed subtropical forest. Forest Ecology and Management, 373, 93–99. doi:10.1016/j.foreco.2016.03.048 Hannam, K., Quideau, S., & Kishchuk, B. (2006). Forest floor microbial communities inrelation to stand composition and timber harvesting in northern Alberta. Soil Biology and Biochemistry, 38(9), 2565-2575. doi:10.1016/j.soilbio.2006.03.015 Hardoim, P., Van Overbeek, L., Berg, G., Pirttilä, A., Compant, S., Campisano, A., Döring, M., & Sessitsch, A. (2015). The hidden world within plants: ecologicaland evolutionary considerations for defining functioning of microbialendophytes. Microbiology and Molecular Biology Reviews, 79, 293–320. doi:10.1128/mmbr.00050-14 Iqbal, J., Ronggui, H., Lijun, D., Lan, L., Shan, L., Tao, C., & Leilei, R. (2008). Differences in soil CO2 flux between different land use types in mid-subtropical China. Soil Biology and Biochemistry, 40, 2324-2333. doi:10.1016/j.soilbio.2008.05.010 Jomura, M., Kimura, H., Furusawa, H., Kominami, Y., & Kanazawa, Y. (2004). The measurement of microbial biomass C in coarse woody debris by fumigation– extraction method. Memoirs of Graduate School of Science and Technology Kobe University, 22, 67–70. Jourgholami, M., Ghassemi, T., & Labelleb, R. (2019). Soil physio-chemical and biological indicators to evaluate the restoration of compacted soil following reforestation. Ecological Indicators, 101, 102-110. doi:10.1016/j.ecolind.2019.01.009 Kara, O., & Bolat, L. (2007). The effect of different land uses on soil microbial biomass carbon and nitrogen in Barton Province. Turkish Journal of Agriculture and Forestry, 32, 281-288. Kersey, J., & David, M. (2021). Response of oil health indicators to organic matter removal and compaction manipulations at six LTSP sites in the Western US. Forest Ecology and Management, 490, 119104. Kooch, Y., & Ehsani, S. (2020). The Effect of Different Land Uses on New Indices of Soil Quality in Central Alborz Region. Ecology of Iranian Forest, 8(16), 60-71. doi:10.52547/ifej.8.16.60 [In Persian] Li, Q., Allen, H., Wilson, C., & Wollum, A. (2004). Microbial biomass and bacterialfunctional diversity in forest soils: effects of organic matter removal, compaction, and vegetation control. Soil Biology and Biochemistry, 36, 571-579. doi:10.1016/j.soilbio.2003.12.001 Li, Y., Li, Y., Chang, S., Liang, X., Qin, H., Chen, J., & Xu, Q. (2017). Linking soil fungal community structure and function to soil organic carbon chemical composition in intensively managed subtropical bamboo forests. Soil Biology and Biochemistry, 107, 19–31. doi:10.1016/j.soilbio.2016.12.024 Lu, X., Toda, F., Ding, H., Fang, S., & Yang, W. (2014). Effect of vegetation types on chemical and biological properties of soils of karst ecosystems. European Journal of Soil Biology, 61, 49-57. doi:10.1016/j.ejsobi.2013.12.007 Luo, Y., Zang, H., Yu, Z., Chen, Z., Gunina, A., Kuzyakov, Y., Xu, J., Zhang, K., & Brookes, P. (2017). Priming effects in biochar enriched soils using a three-source-partitioning approach: 14C labelling and 13C natural abundance. Soil Biology and Biochemistry, 106, 28–35. doi:10.1016/j.soilbio.2016.12.006 Maharjana, M., Sanaullaha, M., Razavid, B., & Kuzyakov, Y. (2017). Effect of land use and management practices on microbial biomass and enzyme activities in subtropical top-and sub-soils. Applied Soil Ecology, 113, 22–28. doi:10.1016/j.apsoil.2017.01.008 Malchair, S., & Carnol, M. (2009). Microbial biomass and C and N transformations in forest floors under European beech, sessile oak, Norway spruce and Douglas-fir at four temperate forest sites. Soil Biology and Biochemistry, 41, 831–839. doi:10.1016/j.soilbio.2009.02.004 Martens, R. (1991). Methoden zur quantitativen Bestimmung und Charakterisierung der mikrobiellen Biomasse des Bodens. Bundesforschungsanstalt für Landwirtschaft. Nelson, D., & Sommers, L. (1996). Total carbon, organic carbon, and organic matter. In: D.L Sparks, Methods of soil analysis: Part 3 Chemical Methods, SSSA Book Series No. 5, SSSA and ASA, Madison, WI, 961-1010. Rafiee, F., Habashi, H., Rahmani, R., & Sagheb Talebi, K. (2017). Temporal variation of microbial biomass carbon and microbial quotient in a mixed beech stand (Case study: Dr. Bahramnia forestry plan, Gorgan). Forest and Wood Products, 70(4), 659-670. doi:10.22059/jfwp.2017.243209.869 [In Persian] Salazara, S., Sánchezb, L., Alvareza, J., Valverdea, A., Galindoc, P., Igualc, J., Peixa, A., & Santa-Regina, I. (2011). Correlation among soil enzyme activitiesunder different fore I.st system managementpractices. Ecological Engineering, 37,1123–1131. doi:10.1016/j.ecoleng.2011.02.007 Schinner, F., Öhlinger, R., Kandeler, E., & Margesin, R. (1996). Methods in Soil Biology. Springer Berlin Heidelberg, Berlin, 56 pages. Shalikar, A. (2007). Investigation of spatial variability of some qualitative soil indices in different alternation rice tillage. M.Sc. Thesis, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran. [In Persian] Wang, Y., Chen, L., Xiang, W., Ouyang, S., Zhang, T., Zhang, X., Zeng, Y., Hu, Y., Luo, G., & Kuzyakov, Y. (2021). Forest conversion to plantations: A meta-analysis of consequences for soil and microbial properties and functions. Global Change Biology, 27, 5643-5656. doi:10.1111/gcb.15835 Zifcakova, L., Vetrovsky, T., Howe, A., & Barldrian, P. (2016). Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter. Environmental Microbiology, 18, 288-301. doi:10.1111/1462-2920.13026 | ||
آمار تعداد مشاهده مقاله: 478 تعداد دریافت فایل اصل مقاله: 653 |