تعداد نشریات | 27 |
تعداد شمارهها | 370 |
تعداد مقالات | 3,277 |
تعداد مشاهده مقاله | 4,856,975 |
تعداد دریافت فایل اصل مقاله | 3,324,112 |
ارزیابی تاثیر تغییرات کاربری زمین بر کیفیت آبهای زیرزمینی حوضۀ آبخیز دهرم در استان فارس | ||
مدل سازی و مدیریت آب و خاک | ||
مقاله 12، دوره 3، شماره 1، 1402، صفحه 165-180 اصل مقاله (2.06 M) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22098/mmws.2022.11367.1123 | ||
نویسندگان | ||
رضا دهرمی1؛ فاضل امیری* 2 | ||
1دانش آموخته کارشناسی ارشد/ گروه محیط زیست، واحد بوشهر، دانشگاه آزاد اسلامی، بوشهر، ایران | ||
2دانشیار/ گروه منابع طبیعی و محیط زیست، واحد بوشهر، دانشگاه آزاد اسلامی، بوشهر، ایران | ||
چکیده | ||
آبهای زیرزمینی تنها منبع آب برای شرب، آبیاری و مصارف صنعتی در بسیاری از مناطق خشک و نیمه خشک جهان است. آبهای زیرزمینی میتوانند توسط تأثیرات طبیعی و همچنین انسانی آلوده شوند. فعالیتهای مسکونی، شهری، تجاری، صنعتی و کشاورزی میتوانند بر کیفیت آبهای زیرزمینی تأثیر بگذارند. آلودگی آبهای زیرزمینی منجر به کیفیت پایین آب آشامیدنی، از دست دادن منابع آب، هزینههای بالای پاکسازی، هزینههای بالا برای منابع آب جایگزین و/یا مشکلات بالقوه سلامتی میشود. در ایران، وابستگی به آبهای زیرزمینی در سالهای اخیر به شدت افزایش یافته است. در پژوهش حاضر تأثیر تغییر الگوهای کاربری زمین بر کیفیت آب زیرزمینی در حوضه آبخیز دهرم استان فارس بررسی شد. منطقه مورد مطالعه یک منطقه در حال توسعه کشاورزی است. برای مطالعه تأثیر این تغییر کاربری زمین بر کیفیت آب زیرزمینی، شاخص کیفیت آب زیرزمینی (GQI) در سیستم اطلاعات جغرافیایی (GIS) تهیه شد. در شاخص GQI پارامترهای مختلف کیفیت آب ترکیب شد تا یک شاخص کمی برای مقایسه تغییرات مکانی-زمانی کیفیت آب زیرزمینی ارئه شود. تغییرات کاربری زمین از سال 1393 تا 1400 با استفاده از تصاویر سری زمانی ماهواره لندست بررسی شد. GQI و کاربری زمین در GIS ادغام شدند تا کیفیت آب زیرزمینی تعیین شود. مناطق استفاده پایدار و ناپایدار از آبهای زیرزمینی برای تصمیم گیری بهتر در رابطه با تخصیص کاربری زمین در این منطقه به سرعت در حال تغییر مشخص شدند. تغییرات کاربری زمین با افزایش مساحت سایر کاربریها به اراضی کشاورزی و ساخته شده به شدت تغییر کرده است. تجزیه و تحلیل دادهها نشاندهنده بدتر شدن کیفیت آبهای زیرزمینی در منطقه است که عمدتاً به افزایش مناطق ساخته شده، خشکسالی و تغییر کاربری اراضی به زمینهای کشاورزی و برداشت بی رویه آب توسط کشاورزان از چاههای منطقه، مربوط میشود. میانگین شاخص GQI از 86/42 به 57/36 طی یک دوره 7 ساله از سال 1393 تا 1400 کاهش یافت، که نشاندهنده کاهش کیفیت آب است. کیفیت آب زیرزمینی منطقه در سال 1393 دارای کیفیتی مطلوب است و در محدوده خیلی مناسب قرار دارد. اما در سال 1400 کیفیت آب از خیلی مناسب و مناسب به ضعیف و حتی بد تغییر کرده است. نتایج نشان میدهد که این کیفیت نامناسب و ضعیف آب، بیشتر در محدوده مرکز حوزه که محل توسعه کشاورزی و مسکونی است که دشتها و اراضی مرغوب قرار دارند، اتفاق افتاده است و نه در حاشیه حوضه که مناطق کوهستانی است. همچنین، مناطق استفاده پایدار و ناپایدار از آبهای زیرزمینی برای تصمیم گیری بهتر در رابطه با تخصیص کاربری اراضی در این حوضه آبخیز به سرعت در حال تغییر، مشخص شدند. | ||
کلیدواژهها | ||
پایش تغییرات؛ تخصیص کاربری زمین؛ شاخص کیفیت آب زیرزمینی (GQI)؛ سیستم اطلاعات جغرافیایی (GIS) | ||
مراجع | ||
احمدی، ع. (1401). بررسی تغییرات کیفی آب زیرزمینی در دشت ورامین تهران. مدلسازی و مدیریت آب و خاک، 2(1)، 14-26. خلیلی، ر.، منتصری، ح.، و متقی، ح. (1400). ارزیابی کیفیت آب رودخانۀ چالوس با استفاده از تجزیه و تحلیل آماری و شاخص کیفیت آب (WQI). مدلسازی و مدیریت آب و خاک، 1(3)، 38-52. خلیلی، ر.، منتصری، ح.، متقی، ح.، و جلیلی، م. (1400). ارزیابی کیفیت آب رودخانۀ تالار استان مازندران با استفاده از ترکیب شاخصهای کیفیت آب و مدلسازی چندمتغیره. مدلسازی و مدیریت آب و خاک، 1(4)، 47-30. ضیایی، س.، اسمعلی، ا.، مصطفیزاده، ر.، و قربانی، ا. (1400). بررسی عوامل مؤثر بر تغییرات سطح آب زیرزمینی و افت آبخوان در دشت اردبیل. هیدروژئومورفولوژی، 8(28)، 127-143. ولیزاده کامران، خ.، روستایی، ش.، رحیم پور، ت.، و نخستین روحی، م. (1395). تعیین مناسبترین روش زمین آمار در تهیۀ نقشۀ تغییرات شوری آبهای زیرزمینی (مطالعۀ موردی: دشت شیرامین، استان آذربایجان شرقی). هیدروژئومورفولوژی، 3(6)، 17-32. Ahmadi, A. (2021). Investigation of groundwater quality changes in Varamin Plain of Tehran. Water and Soil Management and Modelling, 2(1), 14-26 (in Persian). Amiri, F., Tabatabaie, T., & Entezari, M. (2020). GIS-based DRASTIC and modified DRASTIC techniques for assessing groundwater vulnerability to pollution in Torghabeh-Shandiz of Khorasan County, Iran. Arabian Journal of Geosciences, 13(12), 479. APHA, (2005). Standard methods for the examination of water and wastewater. Standard methods for the examination of water & wastewater, Washington, DC. Appleyard, S. (1995). The Impact Of Urban Development On Recharge and Groundwater Quality In A Coastal Aquifer Near Perth, Western Australia. Hydrogeology Journal, 3(2), 65-75. Babiker, I.S., Mohamed, M.A.A., & Hiyama, T. (2007). Assessing groundwater quality using GIS. Water Resources Management, 21(4), 699-715. Backman, B., Bodiš, D., Lahermo, P., Rapant, S., & Tarvainen, T. (1998). Application of a groundwater contamination index in Finland and Slovakia. Environmental Geology, 36(1), 55-64. Badeenezhad, A., Radfard, M., Abbasi, F., Jurado, A., Bozorginia, M., Jalili, M., & Soleimani, H. (2021). Effect of land use changes on non-carcinogenic health risks due to nitrate exposure to drinking groundwater. Environmental Science and Pollution Research, 28(31), 41937-41947. Bhargava, D.S. (1985). Expression for drinking water supply standards. Journal of Environmental Engineering, 111(3), 304-316. Brown, R.M., McClelland, N.I., Deininger, R.A., & Tozer, R.G. (1970). A water quality index-do we dare. Water and sewage works, 117(10), 339-343. Dinius, S. (1972). Social accounting system for evaluating water resources. Water Resources Research, 8(5), 1159-1177. Dinius, S. (1987). Design of an index of water quality 1. JAWRA Journal of the American Water Resources Association, 23(5), 833-843. Eiswirth, M., Ho¨tzl, H., Lazar, C., & Merkler, G. (1995). Detection of contaminant transport from damaged sewerage systems and leaky landfills. In: Groundwater quality: remediation and protection, IAHS, 225, 337-346. Engel, B.A., Jang, W.S., Lim, K.J., Navulur, K.C., & Theller, L. (2016). The role of geographical information systems in groundwater engineering. Pp. 969-990, In: The handbook of groundwater engineering, CRC Press. Gnanachandrasamy, G., Ramkumar, T., Venkatramanan, S., Vasudevan, S., Chung, S. Y., & Bagyaraj, M. (2015). Accessing groundwater quality in lower part of Nagapattinam district, Southern India: using hydrogeochemistry and GIS interpolation techniques. Applied Water Science, 5(1), 39-55. Harkins, R.D. (1974). An objective water quality index. Journal (Water Pollution Control Federation), 588-591. He, S., Li, P., Wu, J., Elumalai, V., & Adimalla, N. (2020). Groundwater quality under land use/land cover changes: A temporal study from 2005 to 2015 in Xi’an, Northwest China. Human and Ecological Risk Assessment: An International Journal, 26(10), 2771-2797. Horton, R.K. (1965). An index number system for rating water quality. Journal of Water Pollution Control Federation, 37(3), 300-306. Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., & Ferreira, L.G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1), 195-213. Jiang, Y., Zhang, C., Yuan, D., Zhang, G., & He, R. (2008). Impact of land use change on groundwater quality in a typical karst watershed of southwest China: a case study of the Xiaojiang watershed, Yunnan Province. Hydrogeology Journal, 16(4), 727-735. Khalili, R., Montaseri, H., & Motaghi, H. (2021). Evaluation of water quality in the Chalus River using the statistical analysis and water quality index (WQI). Water and Soil Management and Modelling, 1(3), 38-52 (in Persian). Khalili, R., Montaseri, H., Motaghi, H., & Jalili, M. B. (2021). Water quality assessment of the Talar River in Mazandaran Province based on a combination of water quality indicators and multivariate modeling. Water and Soil Management and Modelling, 1(4), 30-47 (in Persian). Khan, H. H., Khan, A., Ahmed, S., & Perrin, J. (2011). GIS-based impact assessment of land-use changes on groundwater quality: study from a rapidly urbanizing region of South India. Environmental Earth Sciences, 63(6), 1289-1302. Lawniczak, A.E., Zbierska, J., Nowak, B., Achtenberg, K., Grześkowiak, A., & Kanas, K. (2016). Impact of agriculture and land use on nitrate contamination in groundwater and running waters in central-west Poland. Environmental Monitoring and Assessment, 188(3), 172. Liaqat, M.U., Mohamed, M.M., Chowdhury, R., Elmahdy, S.I., Khan, Q., & Ansari, R. (2021). Impact of land use/land cover changes on groundwater resources in Al Ain region of the United Arab Emirates using remote sensing and GIS techniques. Groundwater for Sustainable Development, 14, 100587. Liu, X., Wang, X., Zhang, L., Fan, W., Yang, C., Li, E., et al. (2021). Impact of land use on shallow groundwater quality characteristics associated with human health risks in a typical agricultural area in Central China. Environmental Science and Pollution Research, 28(2), 1712-1724. Najafzadeh, M., Homaei, F., & Mohamadi, S. (2022). Reliability evaluation of groundwater quality index using data-driven models. Environmental Science and Pollution Research, 29(6), 8174-8190. Nas, B., & Berktay, A. (2010). Groundwater quality mapping in urban groundwater using GIS. Environmental Monitoring and Assessment, 160(1), 215-227. Prati, L., Pavanello, R., & Pesarin, F. (1971). Assessment of surface water quality by a single index of pollution. Water Research, 5(9), 741-751. Priyan, K. (2021). Issues and Challenges of Groundwater and Surface Water Management in Semi-Arid Regions. Pp. 1-17, In Pande, C.B., & Moharir, K.N. (Eds.), Groundwater Resources Development and Planning in the Semi-Arid Region, Cham: Springer International Publishing. Rwanga, S.S., & Ndambuki, J.M. (2017). Accuracy assessment of land use/land cover classification using remote sensing and GIS. International Journal of Geosciences, 8(04), 611. Salhi, A., Benabdelouahab, S., Bouayad, E.O., Benabdelouahab, T., Larifi, I., El Mousaoui, M., et al. (2021). Impacts and social implications of landuse-environment conflicts in a typical Mediterranean watershed. Science of The Total Environment, 764, 142853. Schmidt, K.D. (1977). Water quality variations for pumping wells. Groundwater, 15(2), 130-137. Schot, P. P., & van der Wal, J. (1992). Human impact on regional groundwater composition through intervention in natural flow patterns and changes in land use. Journal of Hydrology, 134(1), 297-313. Sethy, S.N., Syed, T.H., & Kumar, A. (2017). Evaluation of groundwater quality in parts of the Southern Gangetic Plain using water quality indices. Environmental Earth Sciences, 76(3), 116. Sheikhy Narany, T., Aris, A. Z., Sefie, A., & Keesstra, S. (2017). Detecting and predicting the impact of land use changes on groundwater quality, a case study in Northern Kelantan, Malaysia. Science of The Total Environment, 599-600, 844-853. Singh, C. K., Shashtri, S., Mukherjee, S., Kumari, R., Avatar, R., Singh, A., et al. (2011). Application of GWQI to Assess Effect of Land Use Change on Groundwater Quality in Lower Shiwaliks of Punjab: Remote Sensing and GIS Based Approach. Water Resources Management, 25(7), 1881-1898. Soltan, M. E. (1999). Evaluation Of Ground Water Quality In Dakhla Oasis (Egyptian Western Desert). Environmental Monitoring and Assessment, 57(2), 157-168. Syariz, M.A., Lin, B.-Y., Denaro, L.G., Jaelani, L. M., Van Nguyen, M., & Lin, C.-H. (2019). Spectral-consistent relative radiometric normalization for multitemporal Landsat 8 imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 147, 56-64. Chapman, D. (1996). Water Quality Assessments: A Guide to the Use of Biota, Sediments and Water in Environmental Monitoring. 2nd Edition: Chapman and Hall Ltd., London, 651 pages. Valizadeh Kamran, K., Roostaei, S., Rahimpoor, T., & Nakhostin Rohee, M. (2016). Determining the Most Appropriate Geostatistical Method for Groundwater Salinity Mapping (Case Study: Shiramin Plain, East Azerbaijan Province). Hydrogeomorphology, 3(6), 17-32 (in Persian). Verma, P., Singh, P. K., Sinha, R. R., & Tiwari, A. K. (2019). Assessment of groundwater quality status by using water quality index (WQI) and geographic information system (GIS) approaches: a case study of the Bokaro district, India. Applied Water Science, 10(1), 27. Wang, Z., Li, F., Xia, Y., Chen, H., Wang, K., Fu, S., et al. (2021). Spatial distribution of groundwater quality in the coastal plain and its relationship with land use and seawater intrusion. Environmental Earth Sciences, 80(14), 465. WHO, (2004). Guidelines for drinking-water quality. vol 1, 3rd edn, recommendations. WHO, Geneva, Switzerland, 145-220. Ziaye Shendershami, S., Esmali Ouri, A., Mostafazadeh, R., & Ghorbani, A. (2021). Effective Factors in Ground Water Variations and Water Table Decrease in Ardabil Plain. Hydrogeomorphology, 8(28), 127-143. | ||
آمار تعداد مشاهده مقاله: 781 تعداد دریافت فایل اصل مقاله: 719 |