- 1. A. M. Bloch, and P. S. Krishnaprasad, J. E. Marsden and R. M. Murray, Nonholonomic
mechanical systems with symmetry, Arch. Rational Mech. Anal. 136(1996), 21–99.
- 2. A. M. Bloch, Nonholonomic Mechanics and Control, Springer Verlag, New York (2003).
- 3. F. Cardin and M. Favreti, On nonholonomic and vakonomic dynamics of mechanical
systems with nonintegrable constraints, J. Geom. Phys. 18(1996), 295–325.
- 4. J. F. Carinena and M. F. Ranada, Lagrangian systems with constraints: a geometric
approach to the method of Lagrange multipliers, J. Phys. A: Math. Gen. 26(1993), 1335– 1351.
- 5. J. Cortes, Geometric, Control and Numerical Aspects of Nonholonomic Systems, Lecture
Notes in Mathematics 1793, Springer, Berlin (2002).
- 6. J. Cortes, M. de Leon, J. C. Marrero and E. Martinez, Nonholonomic Lagrangian systems
on Lie algebroids, Discrete Contin. Dyn. Syst. A. 24(2009), 213–271.
- 7. G. Giachetta, Jet methods in nonholonomic mechanics, J. Math. Phys. 33(1992), 1652–
1655.
- 8. J. Janova, A Geometric theory of mechanical systems with nonholonomic constraints,
Thesis, Faculty of Science, Masaryk University, Brno, 2002 (in Czech).
- 9. J. Janova and J. Musilova, Nonholonomic mechanics mechanics: A geometrical treatment of general coupled rolling motion, Int. J. Non-Linear Mech. 44(2009), 98–105.
- 10. W. S. Koon and J. E. Marsden, The Hamiltonian and Lagrangian approaches to the
dynamics of nonholonomic system, Rep. Math. Phys. 40(1997), 21–62.
- 11. O. Krupkova, and M. Swaczyna, Horizontal and contact forms on constraint manifods,
Proc. of the 24th Winter school Geometry and Physics, Srn, 2004; Rend. Cric0 Mat. Palermo, Serie II, Suppl. 75(2005), 259–267.
- 12. O. Krupkova, Mechanical systems with nonholonomic constraints, J. Math. Phys.
38(1997), 5098–5126.
- 13. O. Krupkova, The Geometry of Ordinary Variational Equation, Springer–Verlage Berlin
Heidelberg (1997).
- 14. O. Krupkova, The Geometry of Ordinary Differential Equations, Lecture Notes in Mathematics 1678, Springer, (1997).
- 15. O. Krupkova, The nonholonomic variational principle, J. Phys. A: Math. Theor.
42(2009), 185–201.
- 16. O. Krupkova, Geometric mechanics on nonholonomic submanifolds, Commun. Math.
Sci. 18(2010), 51–77.
- 17. O. Krupkova and J. Musilova, The relativistic particle as a mechanical system with
nonlinear constraints, J. Phys. A: Math. Gen. 34(2001), 3859–3875.
- 18. I. Kupka and W. M. Oliva, The nonholonomic mechanics, J. Differ. Equ. 169(2001),
169–189.
- 19. M. de Leon, J. C. Marrero and D. M. de Diego, Nonholonomic Lagrangian systems in
jet manifolds, J. Phys. A: Math. Gen. 30(1997), 1167–1190.
- 20. M. de Leon, J.C. Marrero and D. M. de Diego, Mechanical systems with nonlinear constraints, Int. J. Theor. Phys. 36(1997), 979–995.
- 21. M. De. Leon, and P. R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, North-Holland Math, Ser. 152, Amsterdam, (1989).
- 22. E. Massa and E. Pagani, A new look at classical mechanics of constrained systems, Ann.
Inst. Henri Poincare 66(1997), 1–36.
- 23. P. Morando and S. Vignolo, A geometric approach to constrained mechanical systems,
symmetries and inverse problems, J. Phys. A.: Math. Gen. 31(1998), 8233–8245.
- 24. M. F. Ranada, Time-dependent Lagrangian systems: A geometric approach to the theory
of systems with constraints, J. Math. Phys. 35(1994), 748–758.
- 25. W. Sarlet, A direct geometrical construction of the dynamics of nonholonomic Lagrangian systems, Extr. Math. 11(1996), 202–212.
- 26. W. Sarlet, F. Cantrijn and D. J. Saunders, A geometrical framework for the study of
nonholonomic Lagrangian systems, J. Phys. A: Math. Gen. 28(1995), 3253–3268.
- 27. D. J. Saunders, The Geometry of Jet Bundles, London Math Society Lecture Note Series,
142. Cambridge University Press, Cambridge, (1989).
- 28. M. Swaczyna, Examples of nonholonomic mechanical systems, Preprint Series Glob.
Anal. Appl. 10(2004), 1-24.
- 29. M. Swaczyna, Several examples of nonholonomic mechanical systems, Comm. Math.
19(2011), 27–56.
|