تعداد نشریات | 26 |
تعداد شمارهها | 338 |
تعداد مقالات | 2,903 |
تعداد مشاهده مقاله | 4,386,749 |
تعداد دریافت فایل اصل مقاله | 2,983,729 |
مقایسۀ عملکرد مدلهای هوش مصنوعی با مدل IHACRES در مدلسازی جریان حوضۀ آبریز رودخانۀ گاماسیاب | ||
مدل سازی و مدیریت آب و خاک | ||
مقاله 1، دوره 2، شماره 3، 1401، صفحه 1-16 اصل مقاله (1.41 M) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22098/mmws.2022.9972.1076 | ||
نویسنده | ||
صادق مومنه* | ||
دانش آموخته کارشناسی ارشد مهندسی عمران/ گرایش مهندسی و مدیریت منابع آب، دانشکده فنی مهندسی، دانشگاه رازی، کرمانشاه، ایران. | ||
چکیده | ||
امروزه رویکردهای جدید مدلسازی جریان بهدلیل تغییرات اقلیمی و نوسانات شدت و مدت بارش در اکثر مناطق جهان، برای مدیریت منابع آب و کاهش خطرات ناشی از بروز سیلاب نقش فوقالعادهای دارند. در این پژوهش، به مدلسازی جریان برای حوضۀ آبریز رودخانه گاماسیاب، واقع در غرب ایران، پرداخته شده است. برای این منظور از مدلهای هوش مصنوعی (AI) شامل، مدلهای شبکۀ عصبی مصنوعی (ANN) از نوع پرسپترون چندلایه (MLP)، شبکۀ عصبی تابع پایه شعاعی (RBF) و مدل حافظه طولانی کوتاه-مدت (LSTM) استفاده شده است. علاوه بر این برای ارزیابی بهتر مدلهای AI از یک مدل تخصصی نیمه مفهومی بارش-رواناب نیز با عنوان IHACRES بهره گرفته شد. دادههای مورد استفاده شامل، دادههای دبی جریان، بارش و متوسط دمای روزانه برای یک دورة زمانی 31 سال (1 مهر 1365-31 شهریور 1396) که بهصورت سری زمانی دادههای با تأخیر و بهعنوان سیگنال ورودی به مدلها استفاده شده است. جهت ارزیابی عملکرد مدلها از معیار ضریب کارایی نش-ساتکلیف (NSE)، مجذور میانگین مربعات خطا (RMSE) و ضریب همبستگی (R) استفاده شد. نتایج بهدستآمده براساس معیار NSE برای مدلهایLSTM ، RBF، ANN و IHACRES در دورة صحتسنجی بهترتیب برابر مقادیر 0/930، 0/907، 0/903 و 0/512 است. بنابراین، مدل LSTM عملکرد بهتری در دورة صحتسنجی نسبت به سایر مدلها در تخمین دبی جریان ارائه کرد. در ضمن، نتایج بهدست آمده هر چهار مدل بهکار گرفته شده رضایتبخش است. نتایج حاکی از عملکرد بهتر مدلهای ANN، RBF و LSTM بهویژه در نقاط اوج جریان نسبت به IHACRES در مدلسازی جریان برای منطقۀ مورد مطالعه است. در کل، نتایج نشان داد که مدلهای AI، ابزار مفید برای مدلسازی نوسانات جریان هستند و توصیه میشود در مطالعات آتی، این ابزار بیشتر مورد استفاده قرار گیرد. | ||
کلیدواژهها | ||
هوش مصنوعی؛ شبکه عصبی مصنوعی؛ مدل IHACRES؛ حوضۀ رودخانه گاماسیاب؛ مدلسازی جریان | ||
مراجع | ||
امیری، ا.، و رودباری موسوی، م.م. (1395). ارزیابی مدل هیدرولوژی IHACRES در شبیهسازی دبی روزانه (مطالعۀ موردی رودخانههای پلرود و شلمانرود). اکوهیدرولوژی، 3(4)، 533-543. زارع زاده مهریزی، ش.، خورانی، ا.، بذرافشان، ج.، و بذرافشان، ا. (1396). ارزیابی کارآیی مدل SWAT در شبیه سازی رواناب حوضه آبریز گاماسیاب. مرتع و آبخیزداری، مجلۀ منابع طبیعی ایران، 70(4)، 881-893. زین الدینی، س.، انوری، ص.، و زحمتکش، ز. (1397). کاربرد رویکردهای شبیه سازی-بهینه سازی جهت ارزیابی گزینههای مختلف اقلیمی و مدیریتی در یک سامانۀ منابع آب. تحقیقات منابع آب ایران، 14(5)، 295-310.
Adamowski, J., & Chan, H.F. (2011). A wavelet neural network conjunction model for groundwater level forecasting. Journal of Hydrology, 407, 28-40. doi:10.1016/j.jhydrol.2011.06.013. Ahmadi, M., Moeini, A., Ahmadi, H., Motamedvaziri, B., & Zehtabiyan, G.R. (2019). Comparison of the performance of SWAT, IHACRES and artificial neural networks models in rainfall-runoff simulation (case study: Kan watershed, Iran). Physics and Chemistry of the Earth, 111, 65-77. doi:10.1016/j.pce.2019.05.002. Ahooghalandari, M., Khiadani, M., & Kothapalli, G., (2016). Assessment of Artificial Neural Networks and IHACRES models for simulating streamflow in Marillana catchment in the Pilbara, Western Australia. Australian Journal of Water Resources, 19, 116-126. doi:10.1080/13241583.2015.1116183. Amiri, E., Roudbari Mousavi, M.M. (2016). Evaluation of IHACRES hydrological model for simulation of daily flow (case study Polrood and Shalmanrood rivers). Iranian Journal of Eco Hydrology, 3(4), 533-543 (in Persian). Arnold, J.G., Moriasi, D.N., Gassman, P.W., Abbaspour, K.C., White, M.J., Srinivasan, R., Santhi, C., Harmel, R.D., Van Griensven, A., Van Liew, M.W., Kannan, N., & Jha, M.K. (2012). SWAT: Model use, calibration, and validation. Transactions of the ASABE, 55, 1491-1508. ASCE, (2000). Artificial Neural Networks in Hydrology II: Hydrologic Applications. Journal of Hydrologic Engineering, 5, 124-137. doi:10840699/00/0002-01240137. Beck, M.B. (1991). Forecasting environmental change. Journal of Forecasting, 10, 3-19. doi:10.1002/for.3980100103. Carcano, E.C., Bartolini, P., Muselli, M., & Piroddi, L. (2008). Jordan recurrent neural network versus IHACRES in modelling daily streamflows. Journal of Hydrology, 362, 291-307. doi:10.1016/j.jhydrol.2008.08.026. Chen, L.H., Chen, C.T., & Pan, Y.G. (2010). Groundwater Level Prediction Using SOM-RBFN Multisite Model. Journal of Hydrologic Engineering, 15, 624-631. doi:10.1061/(asce)he.1943-5584.0000218. Coulibaly, P., Anctil, F., & Bobee, B. (2000). Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. Journal of Hydrology, 230, 244-257. doi:10.1016/S0022-1694(00)00214-6. Croke, B.F.W., & Jakeman, A.J. (2007). Use of the IHACRES rainfall-runoff model in arid and semi-arid regions. Hydrological Modelling in Arid and Semi-Arid Areas, 41–48. doi:10.1017/CBO9780511535734.005. Croke, B.F.W., Andrews, F., Jakeman, A.J., Cuddy, S.M., & Luddy, A. (2006). IHACRES Classic Plus: A redesign of the IHACRES rainfall-runoff model. Environmental Modelling & Software, 21, 426 - 427. Ebrahimi, H., & Rajaee, T. (2017). Simulation of groundwater level variations using wavelet combined with neural network, linear regression and support vector machine. Global and Planetary Change, 148, 181-191. doi:10.1016/j.gloplacha.2016.11.014. Gong, Y., Zhang, Y., Lan, S., & Wang, H. (2016). A Comparative Study of Artificial Neural Networks, Support Vector Machines and Adaptive Neuro Fuzzy Inference System for Forecasting Groundwater Levels near Lake Okeechobee, Florida. Water Resources Management, 30, 375-391. doi:10.1007/s11269-015-1167-8. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9, 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735. Hsu, K.l., Gupta, H.V., Adamowski, J., Fung Chan, H., Prasher, S.O., Ozga-Zielinski, B., & Sliusarieva, A. (1995). Artificial neural network modeling of the rainfall-runoff process that arise and based Background and Scope. Water Resources Research, 48, 1-14. Jakeman, A., Littlewood, I., & Whitehead, P. (1993). An assessment of the dynamic response characteristics of streamflow in the Balquhidder catchments. Journal of Hydrology, 145(3), 337-355. Jha, M.K., & Sahoo, S. (2015). Efficacy of neural network and genetic algorithm techniques in simulating spatiotemporal fluctuations of groundwater. Hydrological Processes, 29, 671-691. doi:10.1002/hyp.10166. Jimeno-Saez, P., Senent-Aparicio, J., Perez-Sanchez, J., & Pulido-Velazquez, D. (2018). A comparison of SWAT and ANN models for daily runoff simulation in different climatic zones of peninsular Spain. Water (Switzerland), 10. doi:10.3390/w10020192. Kagoda, P.A., Ndiritu, J., Ntuli, C., & Mwaka, B. (2010). Application of radial basis function neural networks to short-term streamflow forecasting. Physics and Chemistry of the Earth, 35, 571-581. doi:10.1016/j.pce.2010.07.021. Kang, K.W., Kim, J.H., Park, C.Y., & Ham, K. J. (1993). Evaluation of hydrological forecasting system based on neural network model. In: Proceedings of the 25th Congress of the International Association for Hydraulic Research, Delft, Netherlands, Pp. 257-264. Kegl, B., Krzyak, A., & Niemann, H. (2000). Radial basis function networks and complexity regularization in function learning and classification. In: Proceedings 15th International Conference on Pattern Recognition. ICPR-2000, IEEE Comput. Soc, Barcelona, Spain, Pp. 81-86. doi:10.1109/ICPR.2000.906022. Kim, J.W., & Pachepsky, Y.A. (2010). Reconstructing missing daily precipitation data using regression trees and artificial neural networks for SWAT streamflow simulation. Journal of Hydrology, 394, 305-314, doi:10.1016/j.jhydrol.2010.09.005. Kim, H., & Lee, S. (2014). Assessment of a seasonal calibration technique using multiple objectives in rainfall–runoff analysis. Hydrological Processes, 28(4), 2159-2173. Kim, K.B. (2015). Application of a baseflow filter for evaluating model structure suitability of the IHACRES CMD. Journal of Hydrology, 521, 543-555. doi:10.1016/j.jhydrol.2014.12.030. Kim, K.B., Kwon, H-H., & Han, D. (2018). Exploration of warm-up period in conceptual hydrological modelling. Journal of Hydrology, 556, 194-210, doi:10.1016/j.jhydrol.2017.11.015. Kim, T.W., & Valdes, J.B. (2003). Nonlinear Model for Drought Forecasting Based on a Conjunction of Wavelet Transforms and Neural Networks. Journal of Hydrologic Engineering, 8, 319-328, doi:10.1061/(asce)1084-0699(2003)8:6(319). Kumar, D.N., Raju, K.S., & Sathish, T., (2004). River flow forecasting using artificial neural networks. Water Resources Management, 2, 143-161, doi:10.1016/j.asoc.2019.04.024. Letcher, R., Schreider, S.Y., Jakeman, A., Neal, B., & Nathan, R. (2001). Methods for the analysis of trends in streamflow response due to changes in catchment condition. Environmetrics, 12(7), 613-630, doi:10.1002/env.486 Meng, X., Yin, M., Ning, L., Liu, D., & Xue, X. (2015). A threshold artificial neural network model for improving runoff prediction in a karst watershed. Environmental Earth Sciences, 74, 5039-5048. doi:10.1007/s12665-015-4562-9. Moriasi, D. N., Arnold, J. G., Van Liew, M.W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885−900 doi:10.13031/2013.23153. Motovilov, Y.G., Gottschalk, L., Engeland, K., & Rodhe, A. (1999). Validation of a distributed hydrological model against spatial observations. Agricultural and Forest Meteorology, 98–99, 31, 257-277, doi:10.1016/S0168-1923(99)00102-1. Mubialiwo, A., Abebe, A., & Onyutha, C. (2021). Performance of rainfall–runoff models in reproducing hydrological extremes: a case of the River Malaba sub-catchment. SN Applied. Sciences, 3, 515, doi:10.1007/s42452-021-04514-7. Nayak, P.C., Satyaji Rao, Y.R., & Sudheer, K.P. (2006). Groundwater level forecasting in a shallow aquifer using artificial neural network approach. Water Resources Management, 20, 77-90, doi:10.1007/s11269-006-4007-z. Nourani, V., Baghanam, A.H., Rahimi, A.Y., & Nejad, F.H. (2014). Evaluation of Wavelet-Based De-noising Approach in Hydrological Models Linked to Artificial Neural Networks. Pp. 209-241, In: Islam, T., Srivastava, P.K., Gupta, M., Zhu, X., & Mukherjee, S. (Eds), Computational Intelligence Techniques in Earth and Environmental Sciences, Springer Netherlands, Dordrecht. volume 9789401786, doi:10.1007/978-94-017-8642-3_12. Onyutha, C. (2019). Hydrological model supported by a stepwise calibration against sub-flows and validation of extreme flow events. Water, 11, 244, https://doi.org/10.3390/w11020244. Principe, J.C., Euliano, N.R., & Curt Lefebvre, W. (1999). Neural and Adaptive Systems: Fundamentals through Simulations. Wiley, 672 pages. Panda, R.K., Pramanik, N., & Bala, B., (2010). Simulation of river stage using artificial neural network and MIKE 11 hydrodynamic model. Computers and Geosciences, 36, 735-745, doi:10.1016/j.cageo.2009.07.012. Pramanik, N., & Panda, R.K. (2009). Application of neural network and adaptive neuro-fuzzy inference systems for river flow prediction. Hydrological Sciences Journal, 54, 247-260, doi:10.1623/hysj.54.2.247. Rezaeianzadeh, M., Stein, A., Tabari, H., Abghari, H., Jalalkamali, N., Hosseinipour, E.Z., & Singh, V.P. (2013). Assessment of a conceptual hydrological model and artificial neural networks for daily outflows forecasting. International Journal of Environmental Science and Technology, 10, 1181-1192, doi:10.1007/s13762-013-0209-0. Sen, S.Y., & Ozkurt, N. (2020). Convolutional Neural Network Hyperparameter Tuning with Adam Optimizer for ECG Classification. 2020 Innovations in Intelligent Systems and Applications Conference (ASYU), Istanbul, Turkey, 978, Pp. 1-6. doi:10.1109/ASYU50717.2020.9259896. Solomatine, D.P., & Ostfeld, A. (2008). Data-driven modelling: some past experiences and new approaches. Journal of Hydroinformatics, 10, 3-22, doi:10.2166/hydro.2008.015. Taesombat, W., & Sriwongsitanon, N. (2010). Flood investigation in the Upper Ping River Basin using mathematical models. Kasetsart Journal-Natural Science, 44, 152-166. Tokar, B.A.S., & Johnson, P.A. (1999). Rainfall-Runoff modeling using artificial neural networks. Journal of Hydrologic Engineering, 4, 232-239. Vaze, J., Post, D. A., Chiew, F. H. S., Perraud, J. M., Viney, N. R., & Teng, J. (2010). Climate non-stationarity–validity of calibrated rainfall–runoff models for use in climate change studies. Journal of Hydrology, 394(3), 447-457. Wagena, M.B., Goering, D., Collick, A.S., Bock, E., Fuka, D.R., Buda, A., & Easton, Z.M. (2020). Comparison of short-term streamflow forecasting using stochastic time series, neural networks, process-based, and Bayesian models. Environmental Modelling and Software, 126. doi:10.1016/j.envsoft.2020.104669. Wu, C., Zhang, X., Wang, W., Lu, C., Zhang, Y., & Qin, W., et al. (2021). Groundwater level modeling framework by combining the wavelet transform with a long short-term memory data-driven model. Science of The Total Environment, 783, 146948, doi:10.1016/j.scitotenv.2021.146948. Ye, W., Bates, B.C., Viney, N.R., Sivapalan, M., & Jakeman, A.J. (1997). Performance of conceptual rainfall-runoff models in low-yielding ephemeral catchments. Water Resources Research, 33, 153–166. Young, C.C., Liu, W.C., & Wu, M.C. (2017). A physically based and machine learning hybrid approach for accurate rainfall-runoff modeling during extreme typhoon events. Applied Soft Computing Journal, 53, 205-216, doi:10.1016/j.asoc.2016.12.052. Zareian, M.J., Eslamian, S., Gohari, A., & Adamowski, J.F. (2017). The effect of climate change on watershed water balance. Pp. 215–238, In: Mathematical Advances towards Sustainable Environmental Systems, Springer. Zarezade Mehrizi, S., Khoorani, A., Bazrafshan, J., & Bazrafshan, O. (2018). Assessing the efficiency of SWAT model for runoff simulation in Gamasiyab basin. Rangeland and Watershed Management. Iranian Journal of Natural Resources, 70(4), 881-893 (in Persian). Zeinoddini, S., Anvari, S., & Zahmatkesh, Z. (2018). Application of Simulation-Optimization Approaches to Assess the Effect of Climate and Management Scenarios on a Water Resource System. Iran-Water Resources Research, 14(5), 295-310 (in Persian). Zhang, G., Patuwo, B., & Hu, M.Y. (2001). A simulation study of artificial neural networks for nonlinear time-series forecasting. Computers & Operations Research, 28, 381-396, doi:10.1016/S0305-0548(99)00123-9. Zhu, S., Luo, X., Yuan, X., & Xu, Z. (2020). An improved long short-term memory network for streamflow forecasting in the upper Yangtze River. Stochastic Environmental Research and Risk Assessment, 34, 1313-1329, doi:10.1007/s00477-020-01766-4. | ||
آمار تعداد مشاهده مقاله: 1,269 تعداد دریافت فایل اصل مقاله: 870 |