- 1. M. Amini, On conformally flat cubic (α, β)-metrics, Journal of Finsler Geometry and its
Applications, 2(1) (2021), 75-85.
- 2. G. Randers, On an asymmetric metric in the four-space of general relativity, Phys. Rve.
59 (1941), 195-199.
- 3. P. Ginsparg, Applied conformal field theory, Ecole dEte de Physique Theorique, 1989.
- 4. H. Shimada and V.S. Sabau, An introduction to Matsumoto metric, Nonlinear Analysis:
RWA. 63(2005), 165-168.
- 5. R.S. Ingarden, On the geometrically absolute optical representation in the electron microscope, Trav. Soc. Sci. Lett. Wrochlaw. Ser. B. 3 (1957), 60 pp.
- 6. M. Matsumoto, Theory of Finsler spaces with m-th root metric, Publ. Math. Debrecen.
49(1996), 135-155.
- 7. P.L. Antonelli, R.S. Ingarden and M. Matsumoto, The Theory of Sprays and Finsler
Spaces with Applications in Physics and Biology, Kluwer Academic Publishers, Dordrecht, 1993.
- 8. G.S. Asanov, Finslerian metric functions over product R × M and their potential applications, Rep. Math. Phys. 41(1998), 117-132.
- 9. X. Cheng, H. Wang and M. Wang, (α, β)-metrics with relatively isotropic mean Landsberg
curvature, Publ. Math. Debrecen, 72(2008), 475-485.
- 10. S. S. Chern and Z. Shen, Riemann-Finsler Geometry, World Scientiflc, Singapore, 2005.
- 11. M.S. Knebelman, Conformal geometry of generalized metric spaces, Proc. Nat Acad. Sci.
USA. 15(1929), 376-379.
- 12. B. Li and Z. Shen, On a class of weak Landsberg metrics, Science in China Series A,
50(2007), 75-85.
- 13. Z. Shen, On R-quadratic Finsler spaces, Publ. Math. Debrecen, 58(2001), 263-274.
- 14. T. Tabatabaeifar, On generalized 4-th root Finsler metrics, Journal of Finsler Geometry
and its Applications, 1(1) (2020), 54-59.
- 15. A. Tayebi and M. Amini, Conformally flat 4-th root (α, β)-metrics with relatively
isotropic mean Landsberg curvature, Mathematical Analysis and Convex Optimization, 1(2) (2020), 25-34.
- 16. A. Tayebi and B. Najafi, On m-th root Finsler metrics, J. Geom. Phys. 61(2011), 1479-
1484.
- 17. A. Tayebi and B. Najafi, On m-th root metrics with special curvature properties, C. R.
Acad. Sci. Paris, Ser. I. 349(2011), 691-693.
- 18. A. Tayebi and M. Razgordani, On conformally flat fourth root (α, β)-metrics, Differ.
Geom. Appl. 62(2019), 253-266.
- 19. A. Tayebi and M. Shahbazi Nia, A new class of projectively flat Finsler metrics with
constant flag curvature K = 1, Differ. Geom. Appl. 41(2015), 123-133.
- 20. G. Yang, On a class of Einstein-reversible Finsler metrics, Differ. Geom. Appl. 60(2018),
80-103.
|