تعداد نشریات | 24 |
تعداد شمارهها | 236 |
تعداد مقالات | 2,047 |
تعداد مشاهده مقاله | 3,307,522 |
تعداد دریافت فایل اصل مقاله | 2,217,851 |
A new non-Riemannian curvature related to the class of (α, β)-metrics | ||
Journal of Finsler Geometry and its Applications | ||
دوره 2، شماره 2، بهمن 2021، صفحه 43-53 اصل مقاله (95.92 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22098/jfga.2021.1367 | ||
نویسندگان | ||
Ali Haji-Badali ![]() ![]() | ||
1Department of Mathematics, Basic Sciences Faculty University of Bonab, Bonab 5551395133, Iran. haji.badali@ubonab.ac.ir | ||
2Department of Mathematics, Basic Sciences Faculty University of Bonab, Bonab 5551395133, Iran. majidi.majidi.2020@gmail.com | ||
چکیده | ||
In this paper, we find a new non-Riemannian quantity for (α, β)-metrics that is closely related to the S-curvature. We call it the S˜-curvature. Then, we show that an (α, β)-metric is Riemannian if and only if S˜=0. For a Randers metric, we find the relation between S-curvature and S∼-curvature. | ||
کلیدواژهها | ||
Hopf maximum principle؛ elliptic operator؛ (α, β)-metrics؛ S-curvature | ||
آمار تعداد مشاهده مقاله: 186 تعداد دریافت فایل اصل مقاله: 220 |