| تعداد نشریات | 30 |
| تعداد شمارهها | 432 |
| تعداد مقالات | 3,791 |
| تعداد مشاهده مقاله | 5,977,923 |
| تعداد دریافت فایل اصل مقاله | 4,153,129 |
A new non-Riemannian curvature related to the class of (α, β)-metrics | ||
| Journal of Finsler Geometry and its Applications | ||
| دوره 2، شماره 2، اسفند 2021، صفحه 43-53 اصل مقاله (95.92 K) | ||
| نوع مقاله: Original Article | ||
| شناسه دیجیتال (DOI): 10.22098/jfga.2021.1367 | ||
| نویسندگان | ||
| Ali Haji-Badali* 1؛ Jila Majidi2 | ||
| 1Department of Mathematics, Basic Sciences Faculty University of Bonab, Bonab 5551395133, Iran. haji.badali@ubonab.ac.ir | ||
| 2Department of Mathematics, Basic Sciences Faculty University of Bonab, Bonab 5551395133, Iran. majidi.majidi.2020@gmail.com | ||
| چکیده | ||
| In this paper, we find a new non-Riemannian quantity for (α, β)-metrics that is closely related to the S-curvature. We call it the S˜-curvature. Then, we show that an (α, β)-metric is Riemannian if and only if S˜=0. For a Randers metric, we find the relation between S-curvature and S∼-curvature. | ||
| کلیدواژهها | ||
| Hopf maximum principle؛ elliptic operator؛ (α, β)-metrics؛ S-curvature | ||
| مراجع | ||
| ||
|
آمار تعداد مشاهده مقاله: 371 تعداد دریافت فایل اصل مقاله: 439 |
||