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Abstract. In this paper, we find a new non-Riemannian quantity for (α, β)-

metrics that is closely related to the S-curvature. We call it the S̃-curvature.

Then we show that an (α, β)-metric is Riemannian if and only if S̃ = 0. For a

Randers metric, we find the relation between S-curvature and S̃-curvature.
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1. Introduction

The study of Finsler spaces with (α, β)-metrics is quit old, but it is a very

important aspect of Finsler geometry and its applications. An (α, β)-metric is

a scalar function on TM defined by F := Φ(βα )α, s = β/α, where ϕ = ϕ(s) is

a C∞ on (−b0, b0) with certain regularity, α =
√
aij(x)yiyj is a Riemannian

metric and β = bi(x)y
i is a 1-form on a manifold M . Then (M,α) is called the

associated Riemannian manifold.

Randers metrics are special (α, β)-metrics defined by Φ = 1 + s, i.e, F =

α+β. The most important case of (α, β)-metrics is the Randers metrics which

were introduced by Randers in 1941 [8] in the context of general relativity.
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They play a prominent role in Ingarden’s study of electron optics [1]. For other

properties of Randers metrics see [3] and [4].

In Finsler geometry, there are several important non-Riemannian quantities:

the distortion τ , the Cartan torsion C, the Berwald curvature B, the mean

Berwald curvature E, the S-curvature and the new non-Riemannian curvature

H in paper [7], etc. They all vanish for Riemannian metrics, hence they are

said to be non-Riemannian.

In this paper, we first introduce a new non-Riemannian quantity for an

(α, β)-metric, by using the geodesic coefficient of α. Indeed, this curvature is

obtain for the associated Riemannian manifold (M,α). This new quantity is

closely related to the S-curvature. Therefore we call it S̃-curvature. Then for

a Randers metric F = α + β, we find the relation between S-curvature and

S̃-curvature.

For an (α, β)-metric F = Φ(β/α)α, we can introduce some non-Riemannian

quantity. Let us denote the Levi-Civita connection of α by ∇̃. We define the

function S̃ defined over TM0 as follows:

S̃ = ∇̃v̂τ,

where v̂ is the Riemannian spray associated to α and the function τ is the

so-called distortion.

The curvature S̃ is closely related to the S-curvature. S̃ is related to (α, β)-

metrics, especially to the associated Riemannian manifold (M,α). But we show

that S̃ is a non-Riemannian quantity and prove the following theorem.

Theorem 1.1. Let F = Φ(βα )α be an (α, β)-metric and α has positive (nega-

tive) sectional curvature. Then S̃ = 0 if and only if F is Riemannian.

There are many connections in Finsler geometry. One is referred to [5] and

[11] for some of these connections. Throughout this paper, we set the Chern

connection on Finsler manifolds.

2. Preliminaries.

Let M be a n-dimensional C∞ manifold. TxM denotes the tangent space

of M at x. The tangent bundle of M is the union of tangent spaces TM :=

∪x∈MTxM . We will denote the elements of TM by (x, y) where y ∈ TxM .

Let TM0 = TM \ {0}. The natural projection π : TM0 → M is given by

π(x, y) := x.

A Finsler structure on M is a function F : TM → [0,∞) with the following

properties; (i) F is C∞ on TM0, (ii) F is positively 1-homogeneous on the

fibers of tangent bundle TM , and (iii) the Hessian of F 2 with elements

gij(x, y) :=
1

2
[F 2(x, y)]yiyj

is positively defined on TM0. The pair (M,F ) is then called a Finsler manifold.
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Let x ∈ M and Fx := F |TxM . To measure the non-Euclidean feature of Fx,

one can define Cy : TxM × TxM × TxM → R by

Cy(u, v, w) :=
1

2

d

dt

[
gy+tw(u, v)

]
t=0

, u, v, w ∈ TxM.

The family C := {Cy}y∈TM0 is called the Cartan torsion. It is well known that

C = 0 if and only if F is Riemannian.

For y ∈ TxM0, define Iy : TxM → R by

Iy(u) :=
n∑

i=1

gij(y)Cy(u, ∂i, ∂j),

where {∂i} is a basis for TxM at x ∈ M . The family I := {Iy}y∈TM0 is called

the mean Cartan torsion. By definition, Iy(y) = 0 and Iλy = λ−1Iy, λ > 0.

Therefore, Iy(u) := Ii(y)u
i, where Ii := gjkCijk.

F is Riemannian if gij(x, y) are independent of y ̸= 0. Then Riemannian

metrics are special Finsler metrics. Traditionally, a Riemannian metric is de-

noted by aij(x)dx
i⊗dxj . It is a family of inner products on tangent spaces. Let

α(y) :=
√
gij(x)yiyj , y = yi ∂

∂xi |x ∈ TxM . α is a family of Euclidean norms on

tangent spaces. Throughout this paper, we also denote a Riemannian metric

by α =
√

aij(x)yiyj .

An (α, β)-metric is a scalar function on TM defined by

F := αΦ
(β
α

)
, s = β/α,

where ϕ = ϕ(s) is a C∞ on (−b0, b0) with certain regularity, α =
√

aij(x)yiyj

is a Riemannian metric and β = bi(x)y
i is a 1-form on a manifold M . Randers

metrics are special (α, β)-metrics defined by Φ = 1 + s, i.e, F = α+ β.

Given a Finsler manifold (M,F ), then a global vector field G is induced by

F on TM0, which in a standard coordinate (xi, yi) for TM0 is given by

G = yi
∂

∂xi
− 2Gi(x, y)

∂

∂yi
,

whereGi(x, y) are local functions on TM0 satisfyingG
i(x, λy) = λ2Gi(x, y) λ >

0. G is called the associated spray to (M,F ). The projection of an integral

curve of G is called a geodesic in M . In local coordinates, a curve c(t) is a

geodesic if and only if its coordinates (ci(t)) satisfy

c̈i + 2Gi(ċ) = 0.

If F is Riemannian, then Gi(x, y) = 1
2Γ

i
jk(x)y

jyk are quadratic in (yi) at every

point x ∈ M . A Finsler metric is called a Berwald metric if the geodesic

coefficients have this property.
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For a Finsler metric F on an n-dimensional manifold M , the Busemann-

Hausdorff volume form dVF = σF (x)dx
1 · · · dxn is defined by

σF (x) :=
Vol(Bn(1))

Vol
{
(yi) ∈ Rn

∣∣∣ F(
yi ∂

∂xi |x
)
< 1

} .

In general, the local scalar function σF (x) can not be expressed in terms of

elementary functions, even F is locally expressed by elementary functions [9].

Let

τ(x, y) := ln
[√det

(
gij(x, y)

)
Vol(Bn(1))

·Vol
{
(yi) ∈ Rn

∣∣∣ F(
yi

∂

∂xi
|x
)
< 1

}]
.

τ = τ(x, y) is a scalar function on TM0, which is called the distortion [9]. For

a vector y ∈ TxM , let c(t),−ϵ < t < ϵ, denote the geodesic with c(0) = x and

ċ(0) = y. Define

S(y) :=
d

dt

[
τ
(
ċ(t)

)]
|t=0.

We call S the S-curvature. This quantity was first introduced in [10] for a

volume comparison theorem.

Let Gi(x, y) denote the geodesic coefficients of F in the same local coordinate

system. The S-curvature can be express by

S(y) =
∂Gi

∂yi
(x, y)− yi

∂

∂xi

[
lnσF (x)

]
,

where y = yi ∂
∂xi |x ∈ TxM . It is proved that S = 0 if F is a Berwald metric

[10]. There are many non-Berwald metrics satisfying S = 0.

Now, we recall the definition of Riemann curvature. Let F be a Finsler

metric on an n-manifold and Gi denote the geodesic coefficients of F . For a

vector y = yi ∂
∂xi |x ∈ TxM , define Ry = Ri

k(x, y)dx
k ⊗ ∂

∂xi |x : TxM → TxM

by

Ri
k := 2

∂Gi

∂xk
− yj

∂2Gi

∂xj∂yk
+ 2Gj ∂2Gi

∂yj∂yk
− ∂Gi

∂yj
∂Gj

∂yk
.

Let us put

Ri
kl :=

1

3

{∂Ri
k

∂yl
− ∂Ri

l

∂yk

}
, Ri

j kl :=
1

3

{ ∂2Ri
k

∂yj∂yl
− ∂2Ri

l

∂yj∂yk

}
.

Then

Ri
k = Ri

j kly
jyl, Ri

kl = Ri
j kly

j , Ri
j kl +Ri

j lk = 0,

Rh
ijk +Rh

jki +Rh
kij = 0.
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3. Proof of Theorem 1.1.

Let (M,F ) be an n-dimensional Finsler space. For every x ∈ M , let

SxM =
{
y ∈ TxM |F (x, y) = 1

}
.

SxM is called the indicatrix of F at x ∈ M and it is a compact hyper surface

of TxM , for every x ∈ M . Let

v : SxM ↪→ TxM

be its canonical embedding, where ∥v∥ = 1. Let (t, U) be a coordinate system

on SxM . Then, SxM is represented locally by vi = vi(tα), α = 1, 2, ..., (n−1).

One can show that:
∂

∂vi
= F

∂

∂yi

The (n− 1) vectors {(viα)} form a basis for the tangent space of SxM in each

point, where

viα =
∂vi

∂tα
, α = 1, 2, ..., (n− 1).

For the sake of simplicity, put

∂α =
∂

∂tα
.

One can easily show that

∂α = Fviα
∂

∂yi

g = gij(x, y)dy
idyj is a Riemannian metric on TxM . Inducing g on SxM , one

gets the Riemannian metric ḡ = ḡαβdt
αdtβ , where

ḡαβ = viαv
i
βgij .

The canonical unit vertical vector field V (x, y) = yi ∂
∂yi together the (n − 1)

vectors ∂α, form the local basis for TxM , B = {u1, u2, ..., un}, where, uα = (viα)

and un = V . We conclude that

g(V, ∂α) = 0,

that is

yiv
i
α = 0.

For an (α, β)-metric F = Φ(β/α)α, we can introduce some non-Riemannian

quantity. Let us denote the Levi-Civita connection and the Rieman curvature

of α by ∇̃ and R̃i
jkl, respectively. Put

û
¯
= u

¯
i δ̂

δ̂xi
, û = ui δ

δxi
, u

¯
=

v

α
, u =

v

F

where { δ
δxi } and { δ̂

δ̂xi
} are the natural locally horizontal basis of TTM0 with

respect to F and α, respectively.
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We define the function S̃ defined over TM0 as follows:

S̃ := ∇̃v̂τ,

where v̂ is the Riemannian spray associated to α and the function τ is the

so-called distortion. Define:

τi =
∂τ

∂yi
, τij =

1

2

∂2τ

∂yj∂yi
.

The S̃-curvature can be express by

S̃(y) =
∂G̃i

∂yi
(x, y)− yi

∂

∂xi

[
lnσF (x)

]
,

where G̃i(x) denote the geodesic coefficients of α in the same local coordinate

system and σF (x) is the volume form of the Finslerian manifold (M,F ).

Elliptic differential operator: In an n-dimensional coordinate neighborhood U ,

we consider a linear partial differential equation of second order called Elliptic

type,

L(φ) = gik
∂2φ

∂xi∂xk
+ hi ∂φ

∂xi
,

where gjk(x) and hi(x) are continuous function of point p(x) in U , and qua-

dratic form gjkZjZk is supposed to be positive definite every where in U . Then

we call L the elliptic differential operator.

Principle maximum of Hopf Theorem. In coordinate neighborhood U , if a

function φ(p) of class C2 satisfies

L(φ) ≥ 0

where φ : M → Rn, and if there exist a fixed point p0 in U such that

φ(p) ≤ φ(p0), ∀p ∈ U , then we have φ(p) = φ(p0), ∀p ∈ U . If φ have

absolute maximum in U , then φ is constant on U .

Proof of Theorem 1.1: Let the S̃ = 0 then, it results that the tensor τij be

∇̃-parallel. Writing the Ricci identity of tensor τij

0 = ∇̃
k
∇̃

l
τjm − ∇̃

l
∇̃

k
τjm = −τrmR̃r

jkl − τjrR̃
r
mkl −

∂τjm
∂yr

R̃r
0kl. (3.1)

A simple use of Bianchi identity for ∇̃, results that

∇iτjk = 0.
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Multiplying the above relation in vj , vl and ãkm, it results:

D(τ) = R̃r m
0 0

1

2

∂2τ

∂yr∂ym

= τrmR̃r m
0 0 = 0. (3.2)

Let x ∈ M and denote by τ̄ the restriction of ρ on the indicatrix SxM of F ,

we have

∂ατ = F viα
∂τ

∂yi
. (3.3)

and then

∂β∂ατ = F ∂βv
i
α

∂τ

∂yi
+ F 2 viαv

j
β

∂2τ

∂yi∂yj
+ Lvjβ

∂F

∂yj
viα

∂τ

∂yi
, (3.4)

But, we have

vjβ
∂F

∂yj
= 0.

Thus,

∂β∂ατ = F ∂βv
i
α

∂τ

∂yi
+ F 2 viαv

j
β

∂2τ

∂yi∂yj
(3.5)

Multiplying the above relation in R̃αβ = R̃α β
n n we have

R̃αβ∂β∂ατ = F 2R̃i j
n n

∂2τ

∂yi∂yj
+ FR̃αβ ∂

β
viα

∂τ

∂yi
. (3.6)

Put

Bα = vαi H
i
βnγ ã

βγ .

Therefore, rewrite (3.2) on SxM

D̃(τ) := R̃αβ∂β∂ατ −Bα ∂ατ = 0 , (α, β = 1, ..., n− 1) (3.7)

SxM is compact and from the hypothesis of the theorem, we know that the

quantity HαβXαXβ is positive (or negative) for any vector X tangent to SxM .

In this case, the partial differential operator D̃ is an elliptic operator. Therefore,

from the last equation and the maximum principle of Hopf it results that ρ is

constant on SxM and therefore,

τ(x, y) = f(x).

It means that F is a Riemannian metric. In this case τ is a constant. The

converse of the theorem is trivial. □
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4. S̃-curvature of Randers Metrics

Randers metrics are among the simplest non-Riemannian Finsler metrics,

so that many well-known geometric quantities are computable. In this section,

we compute the non-Riemannian quantity S̃ for a Randers metric. Let F =

Φ(β/α)α be an (α, β)-metric and ∇̃ and ∇ denote the Levi-Civita and Chern

connections associated to α and F , respectively. Put

S̃ = ∇̃v̂τ,

where v̂ denotes the Riemannian spray associated of α. Suppose that we denote

the geodesic spray coefficients of α and F by the notions G̃i andGi, respectively.

Let F = α+ β be a Randers metric on a manifold M , where

α(y) =
√
aij(x)yiyj , β(y) = bi(x)y

i

with ∥β∥x := supy∈TxM β(y)/α(y) < 1. Define bi|j by

bi|jθ
j := dbi − bjθ

j
i ,

where θi := dxi and θ j
i := Γ̃j

ikdx
k denote the Levi-Civita connection forms of

α. Let

rij :=
1

2

(
bi|j + bj|i

)
, sij :=

1

2

(
bi|j − bj|i

)
,

sij := aihshj , sj := bis
i
j , eij := rij + bisj + bjsi.

Then Gi are given by

Gi = G̃i +
e00
2F

yi − s0y
i + αsi0, (4.1)

where

e00 := eijy
iyj , s0 := siy

i, si0 := sijy
j

and Ḡi denote the geodesic coefficients of α. See [1].

Now, we calculate S̃ for a Randers metric:

S̃ = ∇̃v̂τ = ∇̃v̂ln
√
det(gij)− ∇̃v̂lnσF

=
1

2
gij

∂gij
∂xk

yk − 2gijCijkG̃
k − ym

σF

∂σF

∂xm
, (4.2)

where Cijk = 1
2 [F

2]yiyjyk . By the relation (4.1) and (4.2), we get

S̃ =
1

2
gij

∂gij
∂xk

yk − 2gijCijkG
k + 2gijCijkαs

k
0 −

ym

σF

∂σF

∂xm
(4.3)

Since

S =
1

2
gij

∂gij
∂xk

yk − 2gijCijkG
k − ym

σF

∂σF

∂xm
,

then we have

S̃ = S+ 2Ikαs
k
0. (4.4)
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Corollary 4.1. Let F = α + β be a Randers metric on an n-manifold M ,

where α =
√
aij(x)yiyj and β = bi(x)y

i. Then S̃ = 0 if and only if

S = −2Ikαs
k
0.

Moreover, if β is a close 1-form then S̃ = S.

Example 4.2. ([9]) The Funk metric on a strongly convex domain Ω ⊂ Rn

is a nonnegative function on TΩ = Ω × Rn, which in the special case Ω = Bn

(the unit ball in the Euclidean space Rn) is defined by the following explicit

formula:

F (y) :=

√
|y|2 − (|x|2|y|2− < x, y >2)+ < x, y >

1− |x|2
, y ∈ TxBn = Rn

where |.| and <,> denote the Euclidean norm and inner product in Rn, re-

spectively. The Funk metric on Bn is a Randers metric. For Funk metric we

have:

Gi(y) =
1

2
F (y)yi.

Then for every Funk metric we have S = n+1
2 F . Thus

S̃ =
n+ 1

2
F + 2Ikαs

k
0. (4.5)

Regarding the Berwald curvature of Funk metric, Cheng-Shen introduced

the notion of isotropic Berwald metrics [6]. A Finsler metric F is said to be

isotropic Berwald metric if its Berwald curvature is in the following form

Bi
jkl = σ

{
Fyjykδil + Fykylδij + Fylyjδik + Fyjykylyi

}
, (4.6)

for some scalar function σ = σ(x) on M . Berwald metrics are trivially isotropic

Berwald metrics. Funk metrics are also non-trivial isotropic Berwald metrics

σ = 1
2 .

In [12], it is proved that every Finsler metric of isotropic Berwald curvature

(4.6) has isotropic S-curvature. Then we conclude the following.

Corollary 4.3. Let F = α + β be a Randers metric on an n-manifold M ,

where α =
√
aij(x)yiyj and β = bi(x)y

i. Suppose that F has isotropic Berwald

curvature (4.6). Then

S̃ = (n+ 1)cF + 2Ikαs
k
0.

A Finsler metric on an open subset in Rn is said to be projectively flat if all

geodesics of F are straight in the domain. A Finsler metric on a manifold M

is said to be locally projectively flat if at any point, there is a local coordinate

system (xi) in which F is projectively flat. Let F be a smooth and strongly

convex Finsler metric on a convex domain U ⊂ Rn. Then F is projectively flat
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if only if there exists scalar homogeneous function P : TU → R such that the

its spray coefficients satisfy

Gi(x, y) = P (x, y)yi.

In this case, P = P (x, y) is called the projective factor.

Now, let F = α + β be a locally projectively flat Randers metric on an

n-manifold M . Therefore by proposition 4.3.5, page 51 of Chern-Shen, α is

locally projectively flat and then

sk0 = 0.

In this case, we get S̃ = S.

The Douglas metrics are extension of Berwald metrics, which introduced by

Douglas as a projective invariant in Finsler geometry. A Finsler metric is called

a Douglas metric if

Gi =
1

2
Γi
jk(x)y

jyk + P (x, y)yi,

where Γi
jk = Γi

jk(x) is a scalar function onM and P = P (x, y) is a homogeneous

function of degree one with respect to y on TM0. Equivalently, a Finsler metric

is a Douglas metric if and only if Giyj −Gjyi are homogeneous polynomials in

(yi) of degree three. If P = 0, then F reduces to a Berwald metric. If Γ = 0,

then F is a projectively flat Finsler metric.

For non-zero vector y ∈ TxM0, define Dy : TxM ⊗ TxM ⊗ TxM → TxM by

Dy(u, v, w) := Di
jkl(y)u

ivjwk ∂
∂xi |x, where

Di
jkl :=

∂3

∂yj∂yk∂yl

[
Gi − 2

n+ 1

∂Gm

∂ym
yi

]
.

D is called the Douglas curvature. F is called a Douglas metric if D = 0 [2].

By definition, it follows that the Douglas tensor Dy is symmetric trilinear form

and has the following properties

Dy(y, u, v) = 0, trace(Dy) = 0.

We have the following.

Corollary 4.4. Let F = α+β be a Douglas-Randers metric on an n-manifold

M , where α =
√
aij(x)yiyj and β = bi(x)y

i. Then S̃ = S.

Proof. In [2], it is proved that a Randers metric F = α+β is a Douglas metric

if and only if β is a closed one-form. Then by (4.4), we get the proof. □
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