Journal of Finsler Geometry and its Applications Vol. 2, No. 2 (2021), pp 43-53 DOI: 10.22098/jfga.2021.1367

A new non-Riemannian curvature related to the class of (α, β) -metrics

Ali Haji-Badali^a* and Jila Majidi^b

 ^aDepartment of Mathematics, Basic Sciences Faculty University of Bonab, Bonab 5551395133, Iran.
 ^bDepartment of Mathematics, Basic Sciences Faculty University of Bonab, Bonab 5551395133, Iran.

E-mail: haji.badali@ubonab.ac.ir E-mail: majidi.majidi.2020@gmail.com

Abstract. In this paper, we find a new non-Riemannian quantity for (α, β) metrics that is closely related to the *S*-curvature. We call it the $\widetilde{\mathbf{S}}$ -curvature. Then we show that an (α, β) -metric is Riemannian if and only if $\widetilde{\mathbf{S}} = 0$. For a Randers metric, we find the relation between **S**-curvature and $\widetilde{\mathbf{S}}$ -curvature.

Keywords: Hopf maximum principle, Elliptic operator, (α, β) -metrics, S-curvature.

1. Introduction

The study of Finsler spaces with (α, β) -metrics is quit old, but it is a very important aspect of Finsler geometry and its applications. An (α, β) -metric is a scalar function on TM defined by $F := \Phi(\frac{\beta}{\alpha})\alpha$, $s = \beta/\alpha$, where $\phi = \phi(s)$ is a C^{∞} on $(-b_0, b_0)$ with certain regularity, $\alpha = \sqrt{a_{ij}(x)y^iy^j}$ is a Riemannian metric and $\beta = b_i(x)y^i$ is a 1-form on a manifold M. Then (M, α) is called the associated Riemannian manifold.

Randers metrics are special (α, β) -metrics defined by $\Phi = 1 + s$, i.e, $F = \alpha + \beta$. The most important case of (α, β) -metrics is the Randers metrics which were introduced by Randers in 1941 [8] in the context of general relativity.

^{*}Corresponding Author

AMS 2020 Mathematics Subject Classification: 53B40, 53C30

They play a prominent role in Ingarden's study of electron optics [1]. For other properties of Randers metrics see [3] and [4].

In Finsler geometry, there are several important non-Riemannian quantities: the distortion τ , the Cartan torsion **C**, the Berwald curvature **B**, the mean Berwald curvature **E**, the **S**-curvature and the new non-Riemannian curvature **H** in paper [7], etc. They all vanish for Riemannian metrics, hence they are said to be *non-Riemannian*.

In this paper, we first introduce a new non-Riemannian quantity for an (α, β) -metric, by using the geodesic coefficient of α . Indeed, this curvature is obtain for the associated Riemannian manifold (M, α) . This new quantity is closely related to the **S**-curvature. Therefore we call it $\tilde{\mathbf{S}}$ -curvature. Then for a Randers metric $F = \alpha + \beta$, we find the relation between **S**-curvature and $\tilde{\mathbf{S}}$ -curvature.

For an (α, β) -metric $F = \Phi(\beta/\alpha)\alpha$, we can introduce some non-Riemannian quantity. Let us denote the Levi-Civita connection of α by $\tilde{\nabla}$. We define the function $\tilde{\mathbf{S}}$ defined over TM_0 as follows:

$$\widetilde{\mathbf{S}} = \widetilde{\nabla}_{\hat{\mathbf{v}}} \tau,$$

where $\hat{\mathbf{v}}$ is the Riemannian spray associated to α and the function τ is the so-called distortion.

The curvature $\tilde{\mathbf{S}}$ is closely related to the *S*-curvature. $\tilde{\mathbf{S}}$ is related to (α, β) metrics, especially to the associated Riemannian manifold (M, α) . But we show
that $\tilde{\mathbf{S}}$ is a non-Riemannian quantity and prove the following theorem.

Theorem 1.1. Let $F = \Phi(\frac{\beta}{\alpha})\alpha$ be an (α, β) -metric and α has positive (negative) sectional curvature. Then $\widetilde{\mathbf{S}} = 0$ if and only if F is Riemannian.

There are many connections in Finsler geometry. One is referred to [5] and [11] for some of these connections. Throughout this paper, we set the Chern connection on Finsler manifolds.

2. Preliminaries.

Let M be a n-dimensional C^{∞} manifold. $T_x M$ denotes the tangent space of M at x. The tangent bundle of M is the union of tangent spaces $TM := \bigcup_{x \in M} T_x M$. We will denote the elements of TM by (x, y) where $y \in T_x M$. Let $TM_0 = TM \setminus \{0\}$. The natural projection $\pi : TM_0 \to M$ is given by $\pi(x, y) := x$.

A Finsler structure on M is a function $F: TM \to [0, \infty)$ with the following properties; (i) F is C^{∞} on TM_0 , (ii) F is positively 1-homogeneous on the fibers of tangent bundle TM, and (iii) the Hessian of F^2 with elements

$$g_{ij}(x,y) := \frac{1}{2} [F^2(x,y)]_{y^i y^j}$$

is positively defined on TM_0 . The pair (M, F) is then called a *Finsler manifold*.

Let $x \in M$ and $F_x := F|_{T_xM}$. To measure the non-Euclidean feature of F_x , one can define $\mathbf{C}_y : T_xM \times T_xM \times T_xM \to \mathbb{R}$ by

$$\mathbf{C}_y(u,v,w) := \frac{1}{2} \frac{d}{dt} \Big[\mathbf{g}_{y+tw}(u,v) \Big]_{t=0}, \quad u,v,w \in T_x M.$$

The family $\mathbf{C} := {\mathbf{C}_y}_{y \in TM_0}$ is called the Cartan torsion. It is well known that $\mathbf{C} = 0$ if and only if F is Riemannian.

For $y \in T_x M_0$, define $\mathbf{I}_y : T_x M \to \mathbb{R}$ by

$$\mathbf{I}_{y}(u) := \sum_{i=1}^{n} g^{ij}(y) \mathbf{C}_{y}(u, \partial_{i}, \partial_{j}),$$

where $\{\partial_i\}$ is a basis for $T_x M$ at $x \in M$. The family $\mathbf{I} := \{\mathbf{I}_y\}_{y \in TM_0}$ is called the mean Cartan torsion. By definition, $\mathbf{I}_y(y) = 0$ and $\mathbf{I}_{\lambda y} = \lambda^{-1} \mathbf{I}_y, \lambda > 0$. Therefore, $\mathbf{I}_y(u) := I_i(y)u^i$, where $I_i := g^{jk}C_{ijk}$.

F is Riemannian if $g_{ij}(x,y)$ are independent of $y \neq 0$. Then Riemannian metrics are special Finsler metrics. Traditionally, a Riemannian metric is denoted by $a_{ij}(x)dx^i \otimes dx^j$. It is a family of inner products on tangent spaces. Let $\alpha(\mathbf{y}) := \sqrt{g_{ij}(x)y^iy^j}, \mathbf{y} = y^i \frac{\partial}{\partial x^i}|_x \in T_x M$. α is a family of Euclidean norms on tangent spaces. Throughout this paper, we also denote a Riemannian metric by $\alpha = \sqrt{a_{ij}(x)y^iy^j}$.

An (α, β) -metric is a scalar function on TM defined by

$$F := \alpha \Phi\left(\frac{\beta}{\alpha}\right), \quad s = \beta/\alpha,$$

where $\phi = \phi(s)$ is a C^{∞} on $(-b_0, b_0)$ with certain regularity, $\alpha = \sqrt{a_{ij}(x)y^i y^j}$ is a Riemannian metric and $\beta = b_i(x)y^i$ is a 1-form on a manifold M. Randers metrics are special (α, β) -metrics defined by $\Phi = 1 + s$, i.e, $F = \alpha + \beta$.

Given a Finsler manifold (M, F), then a global vector field G is induced by F on TM_0 , which in a standard coordinate (x^i, y^i) for TM_0 is given by

$$\mathbf{G} = y^i \frac{\partial}{\partial x^i} - 2G^i(x, y) \frac{\partial}{\partial y^i},$$

where $G^i(x, y)$ are local functions on TM_0 satisfying $G^i(x, \lambda y) = \lambda^2 G^i(x, y)$ $\lambda > 0$. **G** is called the associated *spray* to (M, F). The projection of an integral curve of G is called a *geodesic* in M. In local coordinates, a curve c(t) is a geodesic if and only if its coordinates $(c^i(t))$ satisfy

$$\ddot{c}^i + 2G^i(\dot{c}) = 0.$$

If F is Riemannian, then $G^i(x, y) = \frac{1}{2}\Gamma^i_{jk}(x)y^jy^k$ are quadratic in (y^i) at every point $x \in M$. A Finsler metric is called a *Berwald metric* if the geodesic coefficients have this property.

For a Finsler metric F on an *n*-dimensional manifold M, the Busemann-Hausdorff volume form $dV_F = \sigma_F(x)dx^1 \cdots dx^n$ is defined by

$$\sigma_F(x) := \frac{\operatorname{Vol}(\mathbb{B}^n(1))}{\operatorname{Vol}\left\{(y^i) \in \mathbb{R}^n \mid F\left(y^i \frac{\partial}{\partial x^i}|_x\right) < 1\right\}}.$$

In general, the local scalar function $\sigma_F(x)$ can not be expressed in terms of elementary functions, even F is locally expressed by elementary functions [9]. Let

$$\tau(x,y) := \ln \Big[\frac{\sqrt{\det\left(g_{ij}(x,y)\right)}}{\operatorname{Vol}(\mathbf{B}^n(1))} \cdot \operatorname{Vol}\Big\{(y^i) \in \mathbb{R}^n \Big| \ F\Big(y^i \frac{\partial}{\partial x^i}|_x\Big) < 1 \Big\} \Big].$$

 $\tau = \tau(x, y)$ is a scalar function on TM_0 , which is called the *distortion* [9]. For a vector $\mathbf{y} \in T_x M$, let $c(t), -\epsilon < t < \epsilon$, denote the geodesic with c(0) = x and $\dot{c}(0) = \mathbf{y}$. Define

$$\mathbf{S}(\mathbf{y}) := \frac{d}{dt} \Big[\tau \Big(\dot{c}(t) \Big) \Big]|_{t=0}.$$

We call \mathbf{S} the S-curvature. This quantity was first introduced in [10] for a volume comparison theorem.

Let $G^i(x, y)$ denote the geodesic coefficients of F in the same local coordinate system. The S-curvature can be express by

$$\mathbf{S}(\mathbf{y}) = \frac{\partial G^{i}}{\partial y^{i}}(x, y) - y^{i} \frac{\partial}{\partial x^{i}} \Big[\ln \sigma_{F}(x) \Big]$$

where $\mathbf{y} = y^i \frac{\partial}{\partial x^i}|_x \in T_x M$. It is proved that $\mathbf{S} = 0$ if F is a Berwald metric [10]. There are many non-Berwald metrics satisfying $\mathbf{S} = 0$.

Now, we recall the definition of Riemann curvature. Let F be a Finsler metric on an *n*-manifold and G^i denote the geodesic coefficients of F. For a vector $\mathbf{y} = y^i \frac{\partial}{\partial x^i}|_x \in T_x M$, define $\mathbf{R}_{\mathbf{y}} = R^i{}_k(x,y)dx^k \otimes \frac{\partial}{\partial x^i}|_x : T_x M \to T_x M$ by

$$R^{i}_{\ k} := 2\frac{\partial G^{i}}{\partial x^{k}} - y^{j}\frac{\partial^{2}G^{i}}{\partial x^{j}\partial y^{k}} + 2G^{j}\frac{\partial^{2}G^{i}}{\partial y^{j}\partial y^{k}} - \frac{\partial G^{i}}{\partial y^{j}}\frac{\partial G^{j}}{\partial y^{k}}.$$

Let us put

$$R^i{}_{kl} := \frac{1}{3} \Big\{ \frac{\partial R^i_k}{\partial y^l} - \frac{\partial R^i_l}{\partial y^k} \Big\}, \quad R^i_j{}_{kl} := \frac{1}{3} \Big\{ \frac{\partial^2 R^i_k}{\partial y^j \partial y^l} - \frac{\partial^2 R^i_l}{\partial y^j \partial y^k} \Big\}.$$

Then

$$\begin{aligned} R^{i}_{k} &= R^{i}_{j\ kl} y^{j} y^{l}, \quad R^{i}_{\ kl} &= R^{i}_{j\ kl} y^{j}, \quad R^{i}_{j\ kl} + R^{i}_{j\ lk} = 0 \\ \\ R^{h}_{\ ijk} + R^{h}_{\ jki} + R^{h}_{\ kij} &= 0. \end{aligned}$$

46

3. Proof of Theorem 1.1.

Let (M, F) be an n-dimensional Finsler space. For every $x \in M$, let

$$S_x M = \Big\{ y \in T_x M | F(x, y) = 1 \Big\}.$$

 $S_x M$ is called the indicatrix of F at $x \in M$ and it is a compact hyper surface of $T_x M$, for every $x \in M$. Let

$$v: S_x M \hookrightarrow T_x M$$

be its canonical embedding, where ||v|| = 1. Let (t, U) be a coordinate system on $S_x M$. Then, $S_x M$ is represented locally by $v^i = v^i(t^{\alpha}), \ \alpha = 1, 2, ..., (n-1)$. One can show that:

$$\frac{\partial}{\partial v^i} = F \frac{\partial}{\partial y^i}$$

The (n-1) vectors $\{(v_{\alpha}^{i})\}$ form a basis for the tangent space of $S_{x}M$ in each point, where

$$v^{i}{}_{\alpha} = \frac{\partial v^{i}}{\partial t^{\alpha}}, \quad \alpha = 1, 2, ..., (n-1).$$

For the sake of simplicity, put

$$\partial_{\alpha} = \frac{\partial}{\partial t^{\alpha}}.$$

One can easily show that

$$\partial_{\alpha} = F v^{i}{}_{\alpha} \frac{\partial}{\partial y^{i}}$$

 $g = g_{ij}(x, y)dy^i dy^j$ is a Riemannian metric on $T_x M$. Inducing g on $S_x M$, one gets the Riemannian metric $\bar{g} = \bar{g}_{\alpha\beta} dt^{\alpha} dt^{\beta}$, where

$$\bar{g}_{\alpha\beta} = v^i{}_{\alpha}v^i{}_{\beta}g_{ij}$$

The canonical unit vertical vector field $V(x, y) = y^i \frac{\partial}{\partial y^i}$ together the (n-1) vectors ∂_{α} , form the local basis for $T_x M$, $\mathcal{B} = \{u^1, u^2, ..., u^n\}$, where, $u^{\alpha} = (v^i_{\alpha})$ and $u^n = V$. We conclude that

$$g(V,\partial_{\alpha})=0$$

that is

$$y_i v^i{}_\alpha = 0.$$

For an (α, β) -metric $F = \Phi(\beta/\alpha)\alpha$, we can introduce some non-Riemannian quantity. Let us denote the Levi-Civita connection and the Rieman curvature of α by $\tilde{\nabla}$ and $\tilde{R}^{i}_{\ ikl}$, respectively. Put

$$\underline{\hat{\mathbf{u}}}=\underline{\mathbf{u}}^{i}\frac{\delta}{\hat{\delta}x^{i}},\ \ \hat{u}=u^{i}\frac{\delta}{\delta x^{i}},\ \ \underline{\mathbf{u}}=\frac{v}{\alpha},\ \ u=\frac{v}{F}$$

where $\{\frac{\delta}{\delta x^i}\}$ and $\{\frac{\hat{\delta}}{\hat{\delta} x^i}\}$ are the natural locally horizontal basis of TTM_0 with respect to F and α , respectively.

Ali Haji-Badali and Jila Majidi

We define the function $\widetilde{\mathbf{S}}$ defined over TM_0 as follows:

$$\widetilde{\mathbf{S}} := \widetilde{\nabla}_{\hat{\mathbf{v}}} \tau,$$

where $\hat{\mathbf{v}}$ is the Riemannian spray associated to α and the function τ is the so-called distortion. Define:

$$au_i = \frac{\partial \tau}{\partial y^i}, \quad au_{ij} = \frac{1}{2} \frac{\partial^2 \tau}{\partial y^j \partial y^i}.$$

The \widetilde{S} -curvature can be express by

$$\widetilde{\mathbf{S}}(\mathbf{y}) = \frac{\partial \widetilde{G}^i}{\partial y^i}(x, y) - y^i \frac{\partial}{\partial x^i} \Big[\ln \sigma_F(x) \Big],$$

where $\widetilde{G}^{i}(x)$ denote the geodesic coefficients of α in the same local coordinate system and $\sigma_{F}(x)$ is the volume form of the Finslerian manifold (M, F).

Elliptic differential operator: In an n-dimensional coordinate neighborhood U, we consider a linear partial differential equation of second order called Elliptic type,

$$L(\varphi) = g^{ik} \frac{\partial^2 \varphi}{\partial x^i \partial x^k} + h^i \frac{\partial \varphi}{\partial x^i},$$

where $g^{jk}(x)$ and $h^i(x)$ are continuous function of point p(x) in U, and quadratic form $g^{jk}Z_jZ_k$ is supposed to be positive definite every where in U. Then we call L the elliptic differential operator.

Principle maximum of Hopf Theorem. In coordinate neighborhood U, if a function $\varphi(p)$ of class C^2 satisfies

$$L(\varphi) \ge 0$$

where $\varphi : M \to \mathbb{R}^n$, and if there exist a fixed point p_0 in U such that $\varphi(p) \leq \varphi(p_0), \forall p \in U$, then we have $\varphi(p) = \varphi(p_0), \forall p \in U$. If φ have absolute maximum in U, then φ is constant on U.

Proof of Theorem 1.1: Let the $\tilde{\mathbf{S}} = 0$ then, it results that the tensor τ_{ij} be $\tilde{\nabla}$ -parallel. Writing the Ricci identity of tensor τ_{ij}

$$0 = \tilde{\nabla}_k \tilde{\nabla}_l \tau_{jm} - \tilde{\nabla}_l \tilde{\nabla}_k \tau_{jm} = -\tau_{rm} \tilde{R}^r_{\ jkl} - \tau_{jr} \tilde{R}^r_{\ mkl} - \frac{\partial \tau_{jm}}{\partial y^r} \tilde{R}^r_{\ 0kl}.$$
 (3.1)

A simple use of Bianchi identity for $\tilde{\nabla}$, results that

$$\nabla_i \tau_{jk} = 0.$$

48

Multiplying the above relation in v^j , v^l and \tilde{a}^{km} , it results:

$$\mathbf{D}(\tau) = \tilde{R}^{r}{}_{0}{}^{m}{}_{0}\frac{1}{2}\frac{\partial^{2}\tau}{\partial y^{r}\partial y^{m}}$$
$$= \tau_{rm}\tilde{R}^{r}{}_{0}{}^{m}{}_{0}=0.$$
(3.2)

Let $x \in M$ and denote by $\overline{\tau}$ the restriction of ρ on the indicatrix $S_x M$ of F, we have

$$\partial_{\alpha}\tau = F \ v_{\alpha}^{i} \frac{\partial\tau}{\partial y^{i}}.$$
(3.3)

and then

$$\partial_{\beta}\partial_{\alpha}\tau = F \ \partial_{\beta}v_{\alpha}^{i} \ \frac{\partial\tau}{\partial y^{i}} + F^{2} \ v_{\alpha}^{i}v_{\beta}^{j} \ \frac{\partial^{2}\tau}{\partial y^{i}\partial y^{j}} + Lv_{\beta}^{j} \ \frac{\partial F}{\partial y^{j}} \ v_{\alpha}^{i} \ \frac{\partial\tau}{\partial y^{i}}, \tag{3.4}$$

But, we have

$$v_{\beta}^{j} \ \frac{\partial F}{\partial y^{j}} = 0.$$

Thus,

$$\partial_{\beta}\partial_{\alpha}\tau = F \ \partial_{\beta}v_{\alpha}^{i} \ \frac{\partial\tau}{\partial y^{i}} + F^{2} \ v_{\alpha}^{i}v_{\beta}^{j} \ \frac{\partial^{2}\tau}{\partial y^{i}\partial y^{j}}$$
(3.5)

Multiplying the above relation in $\tilde{R}^{\alpha\beta} = \tilde{R}^{\alpha\ \beta}_{\ n\ n}$ we have

$$\tilde{R}^{\alpha\beta}\partial_{\beta}\partial_{\alpha}\tau = F^{2}\tilde{R}^{i\ j}_{\ n\ n}\ \frac{\partial^{2}\tau}{\partial y^{i}\partial y^{j}} + F\tilde{R}^{\alpha\beta}\ \partial_{\beta}v^{i}_{\alpha}\ \frac{\partial\tau}{\partial y^{i}}.$$
(3.6)

Put

$$B^{\alpha} = v_i^{\alpha} H^i_{\beta n\gamma} \tilde{a}^{\beta \gamma}.$$

Therefore, rewrite (3.2) on $S_x M$

$$\tilde{\mathbf{D}}(\tau) := \tilde{R}^{\alpha\beta} \partial_{\beta} \partial_{\alpha} \tau - B^{\alpha} \partial_{\alpha} \tau = 0 , \quad (\alpha, \ \beta = 1, ..., n - 1)$$
(3.7)

 $S_x M$ is compact and from the hypothesis of the theorem, we know that the quantity $H^{\alpha\beta}X_{\alpha}X_{\beta}$ is positive (or negative) for any vector X tangent to $S_x M$. In this case, the partial differential operator $\tilde{\mathbf{D}}$ is an elliptic operator. Therefore, from the last equation and the maximum principle of Hopf it results that ρ is constant on $S_x M$ and therefore,

$$\tau(x,y) = f(x).$$

It means that F is a Riemannian metric. In this case τ is a constant. The converse of the theorem is trivial.

Ali Haji-Badali and Jila Majidi

4. S-curvature of Randers Metrics

Randers metrics are among the simplest non-Riemannian Finsler metrics, so that many well-known geometric quantities are computable. In this section, we compute the non-Riemannian quantity $\tilde{\mathbf{S}}$ for a Randers metric. Let $F = \Phi(\beta/\alpha)\alpha$ be an (α, β) -metric and $\tilde{\nabla}$ and ∇ denote the Levi-Civita and Chern connections associated to α and F, respectively. Put

$$\widetilde{\mathbf{S}} = \widetilde{\nabla}_{\hat{\mathbf{v}}} \tau,$$

where $\hat{\mathbf{v}}$ denotes the Riemannian spray associated of α . Suppose that we denote the geodesic spray coefficients of α and F by the notions \tilde{G}^i and G^i , respectively. Let $F = \alpha + \beta$ be a Randers metric on a manifold M, where

$$\alpha(y) = \sqrt{a_{ij}(x)y^i y^j}, \qquad \beta(y) = b_i(x)y^i$$

with $\|\beta\|_x := \sup_{y \in T_xM} \beta(y)/\alpha(y) < 1$. Define $b_{i|j}$ by

$$b_{i|j}\theta^j := db_i - b_j \theta_i^{\ j},$$

where $\theta^i := dx^i$ and $\theta_i^{\ j} := \tilde{\Gamma}^j_{ik} dx^k$ denote the Levi-Civita connection forms of α . Let

$$r_{ij} := \frac{1}{2} \Big(b_{i|j} + b_{j|i} \Big), \qquad s_{ij} := \frac{1}{2} \Big(b_{i|j} - b_{j|i} \Big),$$
$$s^{i}{}_{j} := a^{ih} s_{hj}, \qquad s_{j} := b_{i} s^{i}{}_{j}, \qquad e_{ij} := r_{ij} + b_{i} s_{j} + b_{j} s_{i}$$

Then G^i are given by

$$G^{i} = \tilde{G}^{i} + \frac{e_{00}}{2F}y^{i} - s_{0}y^{i} + \alpha s^{i}{}_{0}, \qquad (4.1)$$

where

$$e_{00} := e_{ij}y^iy^j, \quad s_0 := s_iy^i, \quad s^i_{\ 0} := s^i_{\ j}y^j$$

and \bar{G}^i denote the geodesic coefficients of α . See [1].

Now, we calculate \widetilde{S} for a Randers metric:

$$\widetilde{\mathbf{S}} = \widetilde{\nabla}_{\widehat{\mathbf{v}}} \tau = \widetilde{\nabla}_{\widehat{\mathbf{v}}} \ln \sqrt{\det(g_{ij})} - \widetilde{\nabla}_{\widehat{\mathbf{v}}} \ln \sigma_F
= \frac{1}{2} g^{ij} \frac{\partial g_{ij}}{\partial x^k} y^k - 2g^{ij} C_{ijk} \widetilde{G}^k - \frac{y^m}{\sigma_F} \frac{\partial \sigma_F}{\partial x^m},$$
(4.2)

where $C_{ijk} = \frac{1}{2} [F^2]_{y^i y^j y^k}$. By the relation (4.1) and (4.2), we get

$$\widetilde{\mathbf{S}} = \frac{1}{2}g^{ij}\frac{\partial g_{ij}}{\partial x^k}y^k - 2g^{ij}C_{ijk}G^k + 2g^{ij}C_{ijk}\alpha s^k_{\ 0} - \frac{y^m}{\sigma_F}\frac{\partial\sigma_F}{\partial x^m}$$
(4.3)

Since

$$\mathbf{S} = \frac{1}{2}g^{ij}\frac{\partial g_{ij}}{\partial x^k}y^k - 2g^{ij}C_{ijk}G^k - \frac{y^m}{\sigma_F}\frac{\partial\sigma_F}{\partial x^m},$$

then we have

$$\widetilde{\mathbf{S}} = \mathbf{S} + 2I_k \alpha s^k_{\ 0}. \tag{4.4}$$

50

Corollary 4.1. Let $F = \alpha + \beta$ be a Randers metric on an n-manifold M, where $\alpha = \sqrt{a_{ij}(x)y^iy^j}$ and $\beta = b_i(x)y^i$. Then $\widetilde{\mathbf{S}} = 0$ if and only if

$$\mathbf{S} = -2I_k \alpha s^k_{\ 0}.$$

Moreover, if β is a close 1-form then $\widetilde{\mathbf{S}} = \mathbf{S}$.

Example 4.2. ([9]) The Funk metric on a strongly convex domain $\Omega \subset \mathbb{R}^n$ is a nonnegative function on $T\Omega = \Omega \times \mathbb{R}^n$, which in the special case $\Omega = \mathbb{B}^n$ (the unit ball in the Euclidean space \mathbb{R}^n) is defined by the following explicit formula:

$$F(y) := \frac{\sqrt{|y|^2 - (|x|^2|y|^2 - \langle x, y \rangle^2)} + \langle x, y \rangle}{1 - |x|^2}, \quad y \in T_x \mathbb{B}^n = \mathbb{R}^n$$

where |.| and $\langle \rangle$ denote the Euclidean norm and inner product in \mathbb{R}^n , respectively. The Funk metric on \mathbb{B}^n is a Randers metric. For Funk metric we have:

$$G^i(y) = \frac{1}{2}F(y)y^i.$$

Then for every Funk metric we have $\mathbf{S} = \frac{n+1}{2}F$. Thus

$$\widetilde{\mathbf{S}} = \frac{n+1}{2}F + 2I_k \alpha s^k_{\ 0}. \tag{4.5}$$

Regarding the Berwald curvature of Funk metric, Cheng-Shen introduced the notion of isotropic Berwald metrics [6]. A Finsler metric F is said to be isotropic Berwald metric if its Berwald curvature is in the following form

$$B^{i}{}_{jkl} = \sigma \Big\{ F_{y^{j}y^{k}} \delta^{i}{}_{l} + F_{y^{k}y^{l}} \delta^{i}{}_{j} + F_{y^{l}y^{j}} \delta^{i}{}_{k} + F_{y^{j}y^{k}y^{l}} y^{i} \Big\},$$
(4.6)

for some scalar function $\sigma = \sigma(x)$ on M. Berwald metrics are trivially isotropic Berwald metrics. Funk metrics are also non-trivial isotropic Berwald metrics $\sigma = \frac{1}{2}$.

In [12], it is proved that every Finsler metric of isotropic Berwald curvature (4.6) has isotropic S-curvature. Then we conclude the following.

Corollary 4.3. Let $F = \alpha + \beta$ be a Randers metric on an n-manifold M, where $\alpha = \sqrt{a_{ij}(x)y^iy^j}$ and $\beta = b_i(x)y^i$. Suppose that F has isotropic Berwald curvature (4.6). Then

$$\widetilde{\mathbf{S}} = (n+1)cF + 2I_k \alpha s^k_{\ 0}.$$

A Finsler metric on an open subset in \mathbb{R}^n is said to be projectively flat if all geodesics of F are straight in the domain. A Finsler metric on a manifold M is said to be locally projectively flat if at any point, there is a local coordinate system (x^i) in which F is projectively flat. Let F be a smooth and strongly convex Finsler metric on a convex domain $\mathcal{U} \subset \mathbb{R}^n$. Then F is projectively flat

if only if there exists scalar homogeneous function $P: T\mathcal{U} \to \mathbb{R}$ such that the its spray coefficients satisfy

$$G^i(x,y) = P(x,y)y^i.$$

In this case, P = P(x, y) is called the projective factor.

Now, let $F = \alpha + \beta$ be a locally projectively flat Randers metric on an *n*-manifold *M*. Therefore by proposition 4.3.5, page 51 of Chern-Shen, α is locally projectively flat and then

$$s_0^k = 0.$$

In this case, we get $\widetilde{\mathbf{S}} = \mathbf{S}$.

The Douglas metrics are extension of Berwald metrics, which introduced by Douglas as a projective invariant in Finsler geometry. A Finsler metric is called a Douglas metric if

$$G^i = \frac{1}{2}\Gamma^i_{jk}(x)y^jy^k + P(x,y)y^i,$$

where $\Gamma_{jk}^i = \Gamma_{jk}^i(x)$ is a scalar function on M and P = P(x, y) is a homogeneous function of degree one with respect to y on TM_0 . Equivalently, a Finsler metric is a Douglas metric if and only if $G^i y^j - G^j y^i$ are homogeneous polynomials in (y^i) of degree three. If P = 0, then F reduces to a Berwald metric. If $\Gamma = 0$, then F is a projectively flat Finsler metric.

For non-zero vector $y \in T_x M_0$, define $\mathbf{D}_y : T_x M \otimes T_x M \otimes T_x M \to T_x M$ by $\mathbf{D}_y(u, v, w) := D^i_{jkl}(y) u^i v^j w^k \frac{\partial}{\partial x^i}|_x$, where

$$D^{i}{}_{jkl} := \frac{\partial^{3}}{\partial y^{j} \partial y^{k} \partial y^{l}} \left[G^{i} - \frac{2}{n+1} \frac{\partial G^{m}}{\partial y^{m}} y^{i} \right].$$

D is called the Douglas curvature. *F* is called a Douglas metric if $\mathbf{D} = \mathbf{0}$ [2]. By definition, it follows that the Douglas tensor \mathbf{D}_y is symmetric trilinear form and has the following properties

$$\mathbf{D}_y(y, u, v) = 0, \quad trace(\mathbf{D}_y) = 0.$$

We have the following.

Corollary 4.4. Let $F = \alpha + \beta$ be a Douglas-Randers metric on an n-manifold M, where $\alpha = \sqrt{a_{ij}(x)y^iy^j}$ and $\beta = b_i(x)y^i$. Then $\widetilde{\mathbf{S}} = \mathbf{S}$.

Proof. In [2], it is proved that a Randers metric $F = \alpha + \beta$ is a Douglas metric if and only if β is a closed one-form. Then by (4.4), we get the proof.

Acknowledgment: The authors are grateful for Dr. Mehdi Rafie Rad for his valuable and exact comments.

References

- P. L. Antonelli, R. S. Ingarden, and M. Matsumoto, *The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology*, FTPH 58, Kluwer Academic Publishers, 1993.
- S. Bácsó and M. Matsumoto, On Finsler spaces of Douglas type, A generalization of notion of Berwald space, Publ. Math. Debrecen. 51(1997), 385-406.
- D. Bao and C. Robles, On Randers spaces of constant flag curvature, Rep. on Math. Phys. 51 (2003), 9-42.
- B. Bidabad and M. Rafie-Rad, Pure pursuit navigation on Riemannian manifolds, Nonlinear Analysis: Real World Applications, 10(3) (2009), 1265-1269
- B. Bidabad and A. Tayebi, A classification of some Finsler connections, Publ. Math. Debrecen, 71(2007), 253-260.
- 6. X. Chen and Z. Shen, On Douglas metrics, Publ. Math. Debrecen. 66(2005), 503-512.
- B. Najafi, Z. Shen and A. Tayebi, Finsler metrics of scalar flag curvature with special non-Riemannian curvature properties, Geometriae Dedicata, 131(2008), 87-97.
- G. Randers, On an asymmetric metric in the four-space of general relativity, Phys. Rev, 59 (1941), 195-199.
- 9. Z. Shen, *Differential Geometry of Spray and Finsler Spaces*, Kluwer Academic Publishers, Dordrecht, 2001.
- Z. Shen, Volume comparison and its applications in Riemann-Finsler geometry, Advances in Math. 128 (1997), 306-328.
- A. Tayebi, E. Azizpour and E. Esrafilian, On a family of connections in Finsler geometry, Publ. Math. Debrecen, 72(2008), 1-15.
- A. Tayebi and M. Rafie Rad, S-curvature of isotropic Berwald metrics, Science in China, Series A: Math. 51(2008), 2198-2204.

Received: 06.06.2021 Accepted: 19.10.2021