- 1. A. Barani, Convexity of the solution set of a pseudoconvex inequality in Riemannian
manifolds, Numer. Funct. Anal. Opt. 39(2018), 588-599.
- 2. A. Cambini, L. Martein: Generalized Convexity and Optimization, Lecture Notes in
Economics and Mathematical Systems, 616. Springer, Berlin (2009).
- 3. S. Chen and C. Fang, Vector variational inequality with pseudoconvexity on Hadamard
manifolds, Optimization, 65(2016), 2067-2080.
- 4. S. Chen, Existence results for vector variational inequality problems on Hadamard manifolds, Optim. Lett. https://doi.org/10.1007/s11590-020-01562-7, (2020).
- 5. J. X. Da Cruz Neto, O. P. Ferreira and L. R. Lucambio Perez, Contributions to the study
of monotone vector fields, Acta Math. Hungar. 94(2002), 307-320.
- 6. O.P. Ferreira and P.R. Oliveira, Proximal point algorithm on Riemannian manifolds,
Optimization 51(2002), 257-270.
- 7. O.P. Ferreira, L. R. Lucambio P´erez, S. Z. N´emeth,Singularities of monotone vector
fields and an exteragradeient-type algorithm, J. Glob. Optim., 31(2005), 133-151.
- 8. S. Hosseini, M.R. Pouryayevali, On the metric projection onto prox-regular subsets of
Riemannian manifolds, Proc. Amer. Math. Soc. 141(2013), 233-244.
- 9. V.I. Ivanov, Optimality Conditions and Characterizations of the Solution sets in Generalized Convex Problems and Variational inequalities, J. Optim. Theory Appl. 158(2013),
65-84.
- 10. V.I. Ivanov, Characterizations of pseudoconvex functions and semistrictly quasiconvex
ones, J. Glob. Optim. 57(2013), 677-693.
- 11. V.I. Ivanov, A first ordered Characterizations of the strongly pseudoconvex functions,
Proceedings of the Thirty Seventh Spring Conference of the Union of Bulgarian Mathematicians Borovetz, April 2-6, (2008).
- 12. E.E. Levi, Studi sui punti singolari essenziali delle funzioni analitiche di due o pi variabili complesse. Ann. Mat. Pura Appl., 17(1910), 61-68.
- 13. S. Lang, Fundamentals of Differential Geometry, Springer-Verlag, Graduate Text in
Mathematics, 191, New York, (1999).
- 14. O.L. Mangasarian, Pseudoconvex functions. SIAM J. Control 3(1965), 281-290.
- 15. S. Z. N´emeth, Monotone vector fields, Publicationes Mathematics 54(1999), 437-449.
- 16. S. Z. N´emeth, Five kinds of monotone vector fields, Publicationes Mathematics. 9(1999),
417-428.
- 17. C. Olsson and F. Kahl, Generalized Convexity in Multiple View Geometry, J. Math.
Imaging Vis, 38(2010), 35-51.
- 18. T. Rapsc´ak, Smooth Nonlinear Optimization in Rn. Kluwer Academic, New York, (1997).
- 19. T. Sakai, Riemannian Geometry, Translations of Mathematical Monographs, (1992).
- 20. H. Tuy, Sur les ingalits linaires. Colloq. Math. 13(1964), 107-123.
- 21. G. Tang, L. Zhou, N. Huang, The proximal point algorithm for pseudomonotone variational inequalities on Hadamard manifolds, Optim. Lett. 7(2013), 779-790 .
- 22. G. Tang and Nan-jing Huang, Korpelevichs method for variational inequality problems
on Hadamard manifolds, J. Glob. Optim. 54 (2012), 493-509.
- 23. C. Udriste, Convex functions and Optimization methods on Riemannian Manifolds,
Kluwer Academic Publishers, 1994.
|