- 1. H. An and S. Deng, Ivariant (α,β)-metric on homogeneous manifolds, Monatsh. Math.,
154(2008), 89-102.
- 2. D. Bao, S. S. Chern and Z. Shen, An introduction to Riemann-Finsler geometry, SpringerVerlag, (2000).
- 3. S. S. Chern and Z. Shen, Riemann-Finsler geometry, World Scientific, Nankai Tracts in
Mathematics, (2005).
- 4. Z. Duˇsek, The existence of homogeneous geodesics in special homogeneous Finsler spaces,
Matematicki Vesnik, 71(2019), 16-22.
- 5. Z. Duˇsek, The affine approach to homogeneous geodesics in homogeneous Finsler spaces,
Archivum Mathematicum, 54(2018), 257- 263.
- 6. P. Eberlein, Geometry of 2-step nilpotent groups with a left invariant metric, Ann. Sci.
Ecole Norm. Sup., 27(1994), 805-828.
- 7. P. Habibi and D. Latifi and M. Toomanian, Homogeneous geodesics and the critical points
of the restricted Finsler function, J. Contem. Math. Anal. 46(2011), 12-16.
- 8. S. Homolya and O. Kowalski, Simply connected two-step homogeneous nilmanifolds of
dimension 5, Note di Matematica, 1(2006), 69-77.
- 9. O. Kowalski and L. Vanhecke, Riemannian manifolds with homogeneous geodesics, Boll.
Unione. Mat. Ital, 5(1991), 189-246.
- 10. D. Latifi, Homogeneous geodesics in homogeneous Finsler spaces, J. Geom. Phys.,
57(2007), 1421-1433.
- 11. J. Lauret, Homogeneous nilmanifolds of dimensions 3 and 4, Geometriae Dedicata,
68(1997), 145-155.
- 12. M. Parhizkar and D. Latifi, Geodesic vectors of Randers metrics on nilpotent Lie groups
of dimension five, Global. J. Adv. Res. Class. Moder. Geom. 7(2018), 92-101.
- 13. H. R. Salimi Moghaddam, On the Randers metrics on two-step homogenous nilmanifolds
of dimention five, Int. J. Geom. Meth. Mod. Phys. 8(3) (2011) 501-510.
- 14. H. R. Salimi Moghaddam H. Abedi Karimi and M. Nasehi, Douglas (α,β)-metrics on
four-dimensional nilpotent Lie groups, Journal of Finsler Geometry and its Applications, 1(2) (2020), 15-26.
- 15. Z. Shen and G. C. Yildirim, On a class of projectively flat metrics with constant flag
curvature, Canadian Journal of Mathematics, 60(2)(2008), 443-456.
- 16. A. Toth and Z. Kovacs, On the geometry of two-step nilpotent group with left invariant
Finsler metrics, Acta. Math. Acad. Paedagogicae. Nyregyhaziensis., 24(2008) 155-168.
- 17. E. Wilso, Isometry groups on homogeneous nilmanifolds, Geometriae Dedicata,
12(1982), 337-346.
- 18. Z. Yan and L. Huang, On the existence of homogeneous geodesic in homogeneous Finsler
spaces, J. Geom. Phys. 124(2018), 264-267.
- 19. Z. Yan and S. Deng, Finsler spaces whose geodesics ore orbits, Diff. Geom, Appl.
36(2014), 1-23.
- 20. Z. Yan, Some Finsler spaces with homogeneous geodesics, Math. Nach. 290(2017), 474-
481.
- 21. L. Zhou, A local classification of a class of (α,β)-metrics with constant flag curvature,
Differ. Geom. Appl. 28(2010), 170-193.
|