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Abstract. In this paper, we consider invariant square metrics which are in-

duced by invariant Riemannian metrics and invariant vector fields on homoge-

neous spaces. We study geodesic vectors and investigates the set of all homo-

geneous geodesics on two-step nilpotent Lie groups of dimension five.

Keywords: Square metric, geodesic vector, two-step nilpotent Lie group.

1. Introduction

The geometry of invariant Finsler structures on homogeneous manifolds is

one of the interesting subjects in Finsler geometry which has been studied by

some Finsler geometers, during recent years (for example see [1], [4], [10], [13]

and [14]). An important family of Finsler metrics is the family of (α, β)-metrics.

An (α, β)-metric on a manifold M is defined by

F := αϕ(s), s :=
β

α
,

where ϕ = ϕ(s) is a smooth scalar function on an open set (−b0, b0), α =√
aij(x)yiyj is a positive-definite Riemannian metric and β = bi(x)y

i is a

1-form on M . Many of (α, β)-metrics with special and important curvature

properties have been found and discussed. Recently, a special class of Finsler

metrics, the so-called square metrics F = (α + β)2/α, have been shown to

have many special geometric properties [15][21]. In this paper, we consider
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invariant square metrics which are induced by invariant Riemannian metrics

and invariant vector fields on Lie groups.

The Lie algebra n is called 2-step nilpotent Lie algebra if
[
x, [y, z]

]
= 0 for

any x, y, z ∈ n. A Lie group N is said to be 2-step nilpotent if its Lie glgebra n

is 2-step nilpotent. Two-step nilpotent Lie groups endowed with a left-invariant

metric, often called two-step homogeneous nilmanifolds are studied in the last

year [6, 8, 12, 13, 16]. A spacial subclass of two-step homogeneous nilmani-

folds is Heisenberg type groups. In [11] J. Lauret classified, up to isometry,

all homogeneous nilmanifolds of dimension 3 and 4 and computed the corre-

sponding isometry groups. S. Homolya and O. Kowalski have classified in [8]

all 5-dimensional 2-step nilpotent Riemannian nilmanifolds and their isometry

groups. For this reason they classified metric Lie algebras with one, two and

three dimensional center. We use their results in this paper.

In this paper we study the geometry of simply connected two-step nilpo-

tent Lie groups of dimension five endowed with left invariant square metrics.

We consider homogeneous geodesics in a invariant square metric on simply

connected two-step nilpotent Lie groups of dimensional five.

2. Preliminaries

Let M be a smooth n-dimensional C∞ manifold and TM be its tangent

bundle. A Finsler metric F = F (x, y) on an n-dimensional manifold M is a

non-negative function F : TM −→ R+ with the following properties [2]:

(1) F is smooth on the slit tangent bundle TM0 := TM \ {0}.
(2) F (x, λy) = λF (x, y) for any x ∈ M , y ∈ TxM and λ > 0.

(3) The n× n Hessian matrix

(gij) =

(
1

2

∂2F 2

∂yi∂yj

)
is positive definite at every point (x, y) ∈ TM0.

The pair (M,F ) is called a Finsler manifold.

The following bilinear symmetric form gy : TxM × TxM −→ R is positive

definite

gy(u, v) =
1

2

∂2

∂s∂t

[
F 2(x, y + su+ tv)

]
|s=t=0.

Definition 2.1. Let n be a Lie algebra and N is the simply connected Lie

group with Lie algebra n. A Finsler metric F : TN −→ [0,∞) will be called

left-invariant if

∀a ∈ N, ∀X ∈ n, F
(
(La)∗eX

)
= F (X),

where La is the left translation and e is the unit element of the Lie group.
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The left invariant Finsler functions on TN may be identified with Minkowski

norms on n. By left translations, for every Minkowski norm F̃ on n we can

define a left invariant Finsler metric on N

∀a ∈ N,Xe ∈ n, F
(
(La)∗Xe

)
:= F̃ (Xe).

Definition 2.2. Let α =
√
ãij(x)yiyj be a Riemannian metric and β(x, y) =

bi(x)y
i be a 1−form on an n−dimensional manifold M . Let

∥β(x)∥α :=
√
ãij(x)bi(x)bj(x). (2.1)

Now, let the function F is defined as follows

F := αϕ(s) , s =
β

α
, (2.2)

where ϕ = ϕ(s) is a positive C∞ function on (−b0, b0) satisfying

ϕ(s)− sϕ′(s) + (b2 − s2)ϕ′′(s) > 0 , |s| ≤ b < b0. (2.3)

Then by lemma 1.1.2 of [3], F is a Finsler metric if ∥β(x)∥α < b0 for any

x ∈ M . A Finsler metric in the form (2.2) is called an (α, β)−metric [1].

Let M be a smooth manifold. Suppose that ã and β are a Riemannian

metric and a 1-form on M respectively as follows:

ã = ãijdx
i ⊗ dxj

β = bidx
i

In this case we can define a function on TM as follows:

F (x, y) =
(α(x, y) + β(x, y))2

α(x, y)
,

where α(x, y) =
√
ãij(x)yiyj and β(x, y) = bi(x)y

i.

It has been shown F is a Finsler metric if and only if for any x ∈ M ,

∥βx∥ < 1.

The Riemannian metric ã induces an inner product on any cotangent space

T ∗
xM such that ⟨

dxi(x), dxj(x)
⟩
= ãij(x).

The induced inner product on T ∗
xM induce a linear isomorphism between T ∗

xM

and TxM . Then the 1-form β corresponds to a vector field X on M such that

ã(Y,X(x)) = β(x, y). (2.4)

Also we have ∥β∥α = ∥X(x)∥α. Therefore we can write the Finsler metric

F =
(α+ β)2

α

as follows:

F (x, y) =
(α(x, y) + ã(X(x), y))2

α(x, y)
, (2.5)

where for any x ∈ M , ∥X(x)∥α < 1.
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Definition 2.3. Let G be a connected Lie group, g its Lie algebra identified

with the tangent space at the identity element, F̃ : g −→ R+ a Minkowski

norm and F the left-invariant Finsler metric induced by F̃ on G. A geodesic

γ : R+ −→ G is said to be homogeneous if there is a Z ∈ g such that the

following holds

γ(t) = exp(tZ)γ(0), t ∈ R+

A tangent vector X ∈ TeG−{0} is said to be a geodesic vector if the 1-parameter

subgroup t −→ exp(tZ), t ∈ R+, is a geodesic of F [9, 10].

Let G be a connected Lie group with Lie algebra g and let ã be a left-

invariant Riemannian metric on G. In [9], it is proved that a vector Y ∈ g is a

geodesic vector if and only if

ã
(
Y, [Y, Z]

)
= 0, ∀Z ∈ g. (2.6)

For results on homogeneous geodesics in homogeneous Finsler manifolds we

refer to [4, 5, 7, 10, 18, 19]. The following result proved in [10] gives a criterion

for non-zero vector to be a geodesic vector in a homogeneous Finsler space.

Lemma 2.4. A non-zero vector Y ∈ g is a geodesic vector if and only if

gYm
(Ym, [Y, Z]m) = 0, ∀Z ∈ g.

Next, we deduce necessary and sufficient condition for a non-zero vector in

a two-step nilpotent Lie group of dimension five with left-invariant exponential

Finsler metric to be a geodesic vector.

3. Lie algebras with 1-dimensional center

In this section we study simply connected two-step nilpotent Lie group of

dimension five with 1-dimensional center equipped with left-invariant (α, β)−
metric. Let n denotes a 5-dimensional 2-step nilpotent Lie algebra with 1-

dimensional center z and let N be the corresponding simply connected Lie

group. We assume that n is equipped with an inner product ⟨, ⟩. Let e5 be

a unit vector in z and let a be the orthogonal complement of z in n. In [8],

S. Homolya and O. Kowalski showed that there exist an orthonormal basis

{e1, e2, e3, e4, e5} of n such that

[e1, e2] = λe5, [e3, e4] = µe5, (3.1)

where λ ≥ µ > 0. Also the other commutators are zero.

Let F be a left invariant (α, β)−metric on simply connected two-step nilpo-

tent Lie group N defined by the Riemannian metric ã = ˜⟨, ⟩ and the vector

field X = Σ5
i=1xiei. We want to describe all geodesic vectors of (N,F ).

By using the formula

gy(u, v) =
1

2

∂2

∂t∂s
F 2(y + su+ tv)|s=t=0,
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and some computations for the (α, β)−metric F defined by the relation

F (x, y) =
(α(x, y) + ã(X̃(x), y))2

α(x, y)
,

we get

gy(u, v) =
4(
√

ã(y, y) + ã(X, y))3

ã(y, y)5/2

{
ã(X, v)ã(y, u)− ã(y, v)ã(X,u)

}
+
2(
√

ã(y, y) + ã(X, y))2

ã(y, y)

{
ã(u, v) + ã(X,u)ã(X, v)

− ã(X, y)ã(y, v)ã(y, u)

ã(y, y)3/2
+

1√
ã(y, y)

(ã(X,u)ã(y, v)

+ã(X, y)ã(u, y) + ã(X, v)ã(y, u))

}
+

(
√
ã(y, y) + ã(X, y))4

ã(y, y)3{
4ã(y, u)ã(y, v)− ã(u, v)ã(y, y)

}
+

4(
√
ã(y, y) + ã(X, y))2

ã(y, y)(
ã(y, v)√
ã(y, y)

+ ã(X, v)

)(
ã(y, u)√
ã(y, y)

+ ã(X,u)− 2ã(y, u)√
ã(y, y)

−2ã(X, y)ã(y, u)

ã(y, y)

)
. (3.2)

According to formula (3.2) we have

gy(y, [y, z]) = ϕ(r)ϕ
′
(r)
√

ã(y, y)ã(X +By, [y, z]) (3.3)

where ϕ = 1 + s2 + 2s and

B =
ϕ2(r)− rϕ(r)ϕ

′
(r)

ϕ(r)ϕ′(r)
√

ã(y, y)
, r =

ã(X, y)√
ã(y, y)

.

By using Lemma 2.4 and equation (3.3) a vector y =
∑5

i=1 yiei of n is a

geodesic vector if and only if

ã
( 5∑

i=1

xiei +B

5∑
i=1

yiei, [

5∑
i=1

yiei, ej ]
)
= 0. (3.4)

So we get

λy1

(
x5 +By5

)
= 0

λy2

(
x5 +By5

)
= 0

λy3

(
x5 +By5

)
= 0 (3.5)

λy4

(
x5 +By5

)
= 0.
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Corollary 3.1. Let F be the (α, β)−metric defined by an invariant Rieman-

nina metric ã and the left invariant vector field X =
∑5

i=1 xiei on simply

connected two-step nilpotent Lie group of dimension five with one dimensional

center. Then geodesic vectors depending only on x5.

Corollary 3.2. Let (N,F ) be the square metric defined by an invariant Rie-

mannina metric ã and the left invariant vector field X on simply connected

two-step nilpotent Lie group of dimension five with one dimensional center.

Then X is a geodesic vector of (N, ã) if and only if X is a geodesic vector of

(N,F ).

Corollary 3.3. Let F be the square metric defined by the invariant Rie-

mannian metric ã and the left invariant vector field X =
∑4

i=1 xiei on sim-

ply connected two-step nilpotent Lie group of dimension five with one dimen-

sional center. Then a vector y ∈ n is a geodesic vector if and only if y ∈
span{e1, e2, e3, e4} or y = βe5 for β ̸= 0.

Theorem 3.4. Let (N,F ) be the square metric defined by an invariant Rie-

mannian metric ã and an invariant vector field X =
∑4

i=1 xiei on simply

connected two-step nilpotent Lie group of dimension five with one dimensional

center. Then y ∈ n is a geodesic vector of (N,F ) if and only if y is geodesic

vector of (N, ã).

Proof. From (3.1), ã(X, [y, ei]) = 0 for each i = 1, 2, 3, 4, 5. Therefore from

equation (3.3) we can write

gy(y, [y, z]) = (1− r4 − 3r3 + 3r)ã(y, [y, z]).

Therefore gy(y, [y, z]) = 0 if and only if ã(y, [y, z]) = 0. □

4. Lie algebras with 2-dimensional center

In this section we study simply connected two-step nilpotent Lie group of

dimension five with 2-dimensional center equipped with left-invariant square

metric. Let n denotes a 5-dimensional Lie algebra the center z of which is two-

dimensional and let N be the corresponding simply connected Lie group. We

assume that n is equipped with an inner product ⟨, ⟩. In [8] S. Homolya and

O. Kowalski showed that there exist an orthonormal basis {e1, e2, e3, e4, e5} of

n such that

[e1, e2] = λe4 , [e1, e3] = µe5, (4.1)

where {e4, e5} is a basis for the center z, the other commutators are zero and

λ ≥ µ > 0.

Let F be a left invariant square metric on simply connected two-step nilpo-

tent Lie group of dimension five with two dimensional center defined by the

Riemannian metric ã and the vector field X =
∑5

i=1 xiei.
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By using lemma 2.4 and equation (3.3) a vector y =
∑

yiei of F is a geodesic

vector if and only if

ã

(
5∑

i=1

xiei +B
5∑

i=1

yiei,
[ 5∑

i=1

yiei, ej

])
= 0. (4.2)

for each j = 1, 2, 3, 4, 5. So we have

λy2

(
x4 +By4

)
+ µy3(x5 +By5

)
= 0,

λy1

(
x4 +By4

)
= 0, (4.3)

λy1

(
x5 +By5

)
= 0.

Corollary 4.1. Let (N,F ) be the square metric defined by an invariant metric

ã and an invariant vector field X =
∑5

i=1 xiei on simply connected two-step

nilpotent Lie group of dimension five with two dimensional center. Then geo-

desic vectors depending on λ, µ, x4 and x5.

Corollary 4.2. Let (N,F ) be the square metric defined by an invariant Rie-

mannina metric ã and the left invariant vector field X on simply connected

two-step nilpotent Lie group of dimension five with two dimensional center.

Then X is a geodesic vector of (N, ã) if and only if X is a geodesic vector of

(N,F ).

Theorem 4.3. Let (N,F ) be the square metric defined by an invariant metric

ã and an invariant vector field X =
∑3

i=1 xiei on simply connected two-step

nilpotent Lie group of dimension five with two dimensional center. Then y ∈ n

is a geodesic vector of (N,F ) if and only if y is a geodesic vector of ã.

Proof. Let y ∈
∑5

i=1 ∈ n. From (4.1)

ã(X, [y, ei]) = 0, for each i = 1, 2, 3, 4, 5.

Let y is a geodesic vector of (N, ã) by using equation (2.4) we have

ã(y, [y, ei]) = 0, for each i = 1, 2, 3, 4, 5.

Therefore by using (4.2), y is a geodesic vector of (N,F ).

Conversely let y ∈
∑5

i=1 ∈ n be a geodesic vector of (N,F ). Because of

ã(X, [y, ei]) = 0 for each i = 1, 2, 3, 4, 5, by using (4.2) we have

ã(y, [y, ei]) = 0.

This completes the proof. □
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5. Lie algebras with 3-dimensional center

In this section, we study simply connected two-step nilpotent Lie group of

dimension five with 3-dimensional center equipped with left-invariant square

metric. In [8] S. Homolya and O. Kowalski showed that there exist an or-

thonormal basis {e1, e2, e3, e4, e5} of n such that

[e1, e2] = λe3, (5.1)

where {e3, e4, e5} is a basis for the center of n, the other commutators are zero

and λ > 0.

Let F be a left invariant square metric on simply connected two-step nilpo-

tent Lie group of dimension five with 3-dimensional center defined by the Rie-

mannian metric ã and the vector field X =
∑5

i=1 xiei.

By using Lemma 2.4 and equation (3.3) a vector y =
∑

yiei of F is a geodesic

vector if and only if

ã
( 5∑

i=1

xiei +B
∑

yiei,
[∑

yiei, ej

])
= 0, (5.2)

for each j = 1, 2, 3, 4, 5. So we have

λy1

(
x3 +By3

)
= 0,

λy3

(
x3 +By3

)
= 0. (5.3)

Then, we conclude the following.

Corollary 5.1. Let (N,F ) be the square metric defined by an invariant metric

ã and an invariant vector field X =
∑5

i=1 xiei on simply connected two-step

nilpotent Lie group of dimension five with three dimensional center. Then

geodesic vectors depending only on x3.

Also, one can get the following result.

Corollary 5.2. Let (N,F ) be the square metric defined by an invariant Rie-

mannina metric ã and the left invariant vector field X on simply connected

two-step nilpotent Lie group of dimension five with three dimensional center.

Then X is a geodesic vector of (N, ã) if and only if X is a geodesic vector of

(N,F ).

Thus we get the following.

Theorem 5.3. Let (N,F ) be the square metric defined by an invariant metric

ã and an invariant vector field X = x1e1 + x2e2 + x4e4 + x5e5 on simply

connected two-step nilpotent Lie group of dimension five with three dimensional
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center. Then y ∈ n is a geodesic vector if and only if y ∈ Span{e3, e4, e5} or

y ∈ Span{e1, e2, e4, e5}.

Now, we are ready to find the geodesic vectors of a square metric of Berwald

type.

Corollary 5.4. Let F be the square metric of Berwald type on simply connected

two-step nilpotent Lie group of dimension five N with three dimensional center

induced by the Riemannian metric ã and the vector field X. Then its geodesic

vectors are forms of y ∈ Span{e3, e4, e5} or y ∈ Span{e1, e2, e4, e5}

Proof. The Levi-Civita connection of the (N, ã) can be obtained as the follow-

ing

∇e1e2 =
λ

2
e3,

∇e2e1 = −λ

2
e3,

∇e1e3 = −λ

2
e2,

∇e3e1 = −λ

2
e2,

∇e2e3 =
λ

2
e1,

∇e3e2 =
λ

2
e1,

the other connection components are zero.

Let X =
∑

xiei be a left invariant vector field on N which is parallel with

respect to the Riemannian connection of ã. By a direct computation we have

X = x4e4 + x5e5.

Now by using Theorem 5.2 the proof is completed. □

Finally, we prove the following.

Theorem 5.5. Let (N,F ) be the square metric defined by an invariant metric

ã and an invariant vector field X = x1e1 + x2e2 + x4e4 + x5e5 on simply

connected two-step nilpotent Lie group of dimension five with three dimensional

center.Then y ∈ n is a geodesic vector of (N,F ) if and only if y is a geodesic

of (N, ã).

Proof. By using equation (5.2) and equation (2.4) completes the proof. □
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