- 1. M. Amini, On weakly Landsberg 3-dimensional Finsler spaces, Journal of Finsler
Geometry and its Applications, 1(2) (2020), 63-72.
- 2. Z. N. Chetyrkina, Homothetically moving three-dimensional Randers spaces, Vestsi
Akad. Navuk BSSR Ser. Fiz.-Mat. Navuk, 138(1981), 43-51.
- 3. A. Heydari, On semi C-reducible Finsler spaces, Journal of Finsler Geometry and its
Applications, 1(2) (2020), 130-142.
- 4. Y. Ichijy¯o, Finsler spaces modeled on a Minkowski space, J. Math. Kyoto. Univ.
16(1976), 639-652.
- 5. F. Ikeda, On three-dimensional conformally flat Finsler spaces, 4th International
Conference on Differential Geometry and its Applications (Tsukuba, 1996). Tensor (N.S.), 59(1998), 7176.
- 6. F. Ikeda, On relations of main scalars between a three-dimensional Finsler space and
its hypersurface, Tensor (N.S.), 56(1995), 193198.
- 7. F. Ikeda, On some properties of three-dimensional Finsler spaces, Tensor (N.S.),
55(1994), 66-73.
- 8. F. Ikeda, On three-dimensional Finsler spaces with the nonzero constant unified main
scalar, Tensor (N.S.), 50 (1991), 276-280.
- 9. H. Kawaguchi, On Finsler spaces with the vanishing second curvature tensor, Tensor
(N.S.), 26(1972), 250-254.
- 10. S. Kikuchi, On the condition that a Finsler space be conformally flat, Tensor (N.S.),
55(1994), 97-100.
- 11. M. Matsumoto, On Finsler spaces with Randers metric and special forms of important tensors, J. Math. Kyoto Univ. 14(1974), 477-498.
- 12. M. Matsumoto, A theory of three-dimensional Finsler spaces in terms of scalars,
Demonst. Math, 6(1973), 223-251.
- 13. M. Matsumoto, A theory of three-dimensional Finsler spaces in terms of scalars and
its applications, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 45(1) (1999), 115-140.
- 14. M. Matsumoto, Theory of Finsler spaces with (α, β)-metric, Rep. Math. Phys.,
31(1992), 43-84.
- 15. M. Matsumoto and S. H¯oj¯o, A conclusive theorem for C-reducible Finsler spaces,
Tensor. N. S. 32(1978), 225-230.
- 16. M. Matsumoto, V-transformations of Finsler spaces. I. Definition, infinitesimal
transformations and isometries, J. Math. Kyoto Univ. 12(1972), 479-512.
- 17. M. Matsumoto, On three-dimensional Finsler spaces satisfying the T- and Bpconditions, Tensor (N.S.), 29(1975), 13-20.
- 18. A. Mo´or, Uber die Torsion-Und Krummungs invarianten der drei reidimensionalen ¨
Finslerchen R¨aume, Math. Nach, 16(1957), 85-99.
- 19. T. N. Pandey, B. N. Prasad and V. K. Chaubey, Three-dimensional Finsler spaces
with (α, β)-metric, Aligarh Bull. Math. 28(2009), 51-55.
- 20. B. N. Prasad, T. N. Pandey and M. K. Singh, Three dimensional conformally flat
Landsberg and Berwald spaces, J. Int. Acad. Phys. Sci. 13(2009), 299-309.
- 21. Z. I. Szab´o, Positive definite Berwald spaces. Structure theorems on Berwald spaces,
Tensor (N.S.), 35(1981), 25-39.
- 22. Z. I. Szab´o, Berwald metrics constructed by Chevalley’s polynomials, Preprint
arXiv:math.DG/0601522 (2006).
- 23. A. Tayebi and F. Eslami, Some results on 3-dimensional Finsler manifolds, Global
Journal. Advanced. Research. Classical and Modern Geometries, 8(2019), 26-32.
- 24. A. Tayebi and B. Najafi, Classification of 3-dimensional Landsbergian (α, β)-metrics,
Publ. Math. Debrecen. 96(2020), 45-62.
|