- 1. M. Amini, On weakly Landsberg 3-dimensional Finsler spaces, Journal of Finsler Geometry and its Applications, 1(2) (2021), 63-72.
- 2. K. Aso, Notes on some Properties of the Sectional Curvature of the Tangent Bundle,
Yokohama Math. J. 29(1981), 1-5.
- 3. M.T.K Abbassi and M. Sarih, On some hereditary properties of Riemannian g-nnatural
metrics on tangent bundles of Riemannian manifolds, Differ. Geom. Appl. 22(2005) 19-47.
- 4. D. Bao, S. S. Chern and Z. Shen, An Introduction to Riemannian-Finsler Geometry,
Springer-Verlag, New York, 2000.
- 5. A. Bejancu and H.R. Farran, A Geometric Characterization of Finsler Manifold of Constant Curvature K = 1, Internal. J. Math and Math.Sci, vol 23(6) (2000), 399-407.
- 6. A. Bejancu, Tangent bundle and indicatrix bundle of a Finsler manifold, Kodai Math.
J. 31(2008), 272-306.
- 7. S. Gudmundsson and E. Kappos, On the geometry of tangent bundles, Expo. Math.
20(2002), 1-41.
- 8. O. Kowalski, Curvature of the induced Riemannian metric on the tangent bundle of a
Riemannian manifold. Journal. Reine. Angewandte. Mathematik, (1970), 124-129.
- 9. O. Kowalski and M. Sekizawa, Natural transformations of Riemann-Jan metrics on
manifolds to metrics on tangent bundles, Bull. Tokyo Gakugei Univ. 40 (1988), 1-29.
- 10. E. Musso and F. Tricerri, Riemannian metrics on tangent bundles, Ann. Mat. Pura.
Appl. 150(1988), 1-19.
- 11. E. Peyghan and H. Nasrabadi and A. Tayebi, The Homogeneous Lift to the (1,1)-Tensor
Bundle of a Riemannian Metric, Int. J. Geom. Meth. Modern. Phys, 10(4) (2013) 1350006, 18 pages.
- 12. E. Peyghan and H. Nasrabadi and A. Tayebi, Almost Paracontact Structure on Tangent
Sphere Bundle, Int. J. Geom. Meth. Modern. Phys, 10(9) (2013), 1320015 (11 pages).
- 13. E. Peyghan and L. Nourmohammadi Far and A. Tayebi, Cheeger-Gromoll type metrics
on the (1,1)-tensor bundles, J. Cont. Math. Analysis, 48(2013), No 6, 59-70.
- 14. E. Peyghan and A. Tayebi, Finslerian complex and K¨ahlerian structures, Nonlinear Anal.
11(2010), 3021?3030.
- 15. E. Peyghan and A. Tayebi, On Finsler manifolds whose tangent bundle has the g-natural
metric, Int. J. Geom. Meth. Mod. Phys, 8(7) (2011), 1593-1610.
- 16. E. Peyghan, A. Tayebi and C. Zhong, Foliations on the tangent bundle of Finsler manifolds, Science in China, Series A: Math, 55(3) (2011), 647-662.
- 17. E. Peyghan, A. Tayebi and C. Zhong, Horizontal Laplacian on tangent bundle of Finsler
manifold with g-natural metric, Inter. J. Geom. Meth. Modern. Phys, 9(7) (2012) 1250061.
- 18. A. Tayebi and E. Peyghan, On a class of Riemannian metrics arising from Finsler
structures, C. R. Acad. Sci. Paris, Ser. I. 349(2011), 319-322.
- 19. S. Sasaki, On the differential geometry of tangent bundles of Riemannian manifolds,
Tohoku Math. J. 10(1958), 338-354.
- 20. A. Soleiman and N. Youssef, Characterization of Finsler spaces of scalar curvature,
Journal of Finsler Geometry and its Applications, 1(1) (2021), 15-25.
- 21. K. Yano and S. Ishihara, Tangent and cotangent bundles: differential geometry, Dekker
1973.
- 22. B. Ye Wu, Some results on the geometry of tangent bundle of Finsler manifolds, Publ.
Math. Debrecen. 3691 (2007), 1-9
|