تعداد نشریات | 26 |
تعداد شمارهها | 338 |
تعداد مقالات | 2,903 |
تعداد مشاهده مقاله | 4,386,724 |
تعداد دریافت فایل اصل مقاله | 2,983,648 |
On generalized symmetric Finsler spaces with some special (α, β)−metrics | ||
Journal of Finsler Geometry and its Applications | ||
دوره 1، شماره 1، مهر 2020، صفحه 45-53 اصل مقاله (79.02 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22098/jfga.2020.1009 | ||
نویسنده | ||
Milad Zeinali Laki* | ||
Department of Mathematics, University of Mohaghegh Ardabili, p.o.box. 5619911367, Ardabil-Iran. E-mail: miladzeinali@hotmail.com | ||
چکیده | ||
In this paper, we study generalized symmetric Finsler spaces with Matsumoto metric, infinite series metric and exponential metric.The definition of generalized symmetric Finsler spaces is a natural generalization of the definition of Riemannian generalized symmetric spaces. We prove that generalized symmetric (α, β)−spaces with Matsumoto metric, infinite series metric and exponential metric are Riemannian. We also prove that if (M, F) be a generalized symmetric Matsumoto space with F defined by the Riemannian metric a~ and the vector field X, Then the regular s−structure {sx} of (M, F) is also a regular s−structure of the Riemannian manifold (M, ã) and if (M, ã) be a generalized symmetric Riemannian space and Also suppose that F is a Matsumoto metric introduced by ã and a vector field X, Then the regular s−structure {sx} of (M, ã) is also a regular s−structure of (M, F) if and only if X is sx−invariant for all x in M. | ||
کلیدواژهها | ||
(α؛ β)−metric؛ Matsumoto metric؛ infinite series metric؛ exponential metric | ||
مراجع | ||
| ||
آمار تعداد مشاهده مقاله: 257 تعداد دریافت فایل اصل مقاله: 292 |