
تعداد نشریات | 26 |
تعداد شمارهها | 400 |
تعداد مقالات | 3,526 |
تعداد مشاهده مقاله | 5,423,190 |
تعداد دریافت فایل اصل مقاله | 3,706,400 |
Causal automorphisms of two-dimensional Minkowski spacetime and homeomorphisms between its Cauchy surfaces | ||
Journal of Finsler Geometry and its Applications | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 12 خرداد 1404 اصل مقاله (432.27 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22098/jfga.2025.16895.1149 | ||
نویسندگان | ||
Masoud Bahrami Seif Abad1؛ Mehdi Sharifzadeh* 2 | ||
1Department of Mathematics, Yasouj University, Yasouj, Iran | ||
2Department Of Mathematics, Yasouj University, Yasouj, Iran | ||
چکیده | ||
In this paper, we show that for two-dimensional Minkowski spacetime R21with a non-compact Cauchy surface Σ, every compact and connected subset of Σ is a future and past causally admissible subset and it means that the set of all the future causally admissible subset of R21 with respect to Σ is equal to the set of all the set of all the past causally admissible subset of R21 with respect to Σ. Moreover it has been shown that for every spacelike Cauchy surfaces Σ, Σ' of the globally hyperbolic spactime R21, every bijection f:Σ→Σ' can be consider as a homeomorphism or (future, past) causally admissible function. | ||
کلیدواژهها | ||
Lorentzian geometry؛ Globally hyperbolic؛ Order-isomorphism؛ Vietoris topology؛ Causally admissible system | ||
مراجع | ||
1. E. C. Zeeman, Causality implies the Lorentz group, J. Math. Phys. 5(1964), 490. 2. D. H. Kim, An Imbedding of Lorentzian manifolds, Class. Quantum Gravity. 26(2009),075004. 3. D. H. Kim, Causal automorphisms of two-dimensional Minkowski spacetime, Class.Quantum Gravity. 27(2010), 075006. 4. D. H. Kim, A note on non-compact Cauchy surfaces, Class. Quantum Gravity. 25(2008),238002. 5. V. V. Filippov, Basic topological structures of ordinary differential equations, Kluwer Academic Publisher, Netherlands, 1998. 6. B. S. Choundhury and H. S. Mondal, Continuous representation of a globally hyperbolic spacetime with non-compact Cauchy surfaces, Anal. Math. Phys. 5(2015), 183-191. 7. J. K. Beem, P. E. Ehrlich and K. L. Easley, Continuous representation of a globally hyperbolic spacetime with non-compact Cauchy surfaces, Anal. Math. Phys. 5(2015),183-191. 8. B. O’Neil, Semi-Riemannian geometry with applications to relativity, Academic Press,1983. 9. A. N. Bernal and M. Sanchez, Globally hyperbolic spacetimes can be defined as causal instead of strongly causal, Class. Quantum Gravity. 24(745) (2007). 10. R. Geroch, Domain of dependence, J. Math. Phys. 11(437) (1970). 11. A. N. Bernal and M. Sanchez, On smooth Cauchy hypersurfaces and Geroch’s splitting theorem, Commun. Math. Phys. 243(2003), 461-470. 12. A. N. Bernal and M. Sanchez, Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes, Commun. Math. Phys. 257(43) (2005). 13. D. Malement, The class of continuous timelike curves determines the topology of spacetime, J. Math. Phys. 18(7) (1977), 1399-1404. 14. E. Minguzzi and M. Sanchez, The causal hierarchy of spacetimes, Recent developments in pseudo-Riemannian geometry, 299-358, ESI Lect. Math. Phys., Eur. Math. Soc., Zurich,(2008). 15. S. W. Hawking, A. R. King and P. J. McCarthy, A new topology for curved spacetime which incorporates the causal, differential and conformal structure, J. Math. Phys.17(174) (1976). 16. R. Penrose, Techniques of differential topology in relativity, the Society for Industrial and Applied Mathematics (1972). | ||
آمار تعداد مشاهده مقاله: 11 تعداد دریافت فایل اصل مقاله: 15 |