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Abstract. In this paper, we show that for two-dimensional Minkowski space-

time R2
1 with a non-compact Cauchy surface Σ, every compact and connected

subset of Σ is a future and past causally admissible subset and it means that

the set of all the future causally admissible subset of R2
1 with respect to Σ

is equal to the set of all the set of all the past causally admissible subset of

R2
1 with respect to Σ. Moreover it has been shown that for every spacelike

Cauchy surfaces Σ, Σ
′

of the globally hyperbolic spactime R2
1, every bijection

f : Σ → Σ
′

can be consider as a homeomorphism or (future, past) causally

admissible function.

Keywords: Lorentzian geometry, Globally hyperbolic, Order-isomorphism,

Vietoris topology, Causally admissible system.

1. Introduction

The study of causal automorphisms on spasetime is very important because

the existence of causal automorphisms on spasetime M, implies the existence

of some kind of symmetry on M.
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In 1964, Zeeman introduced a standard form of causal automorphism on

Minkowski spacetime Rn1 for n > 3 [1]. Zeeman showed that any causal auto-

morphism can be represented by a composite of orthochronous transformation,

translation and dilatation and he classified all forms of causal automorphisms

on Rn1 with n > 3. In[1] Zeeman showed that the group of all causal auto-

morphisms on Rn1 is of finite dimensional when n > 3. Moreover, this result

applies only when n > 3, and for two-dimensional Minkowski spacetime R2
1 the

standard form of causal automorphism is not yet known. Recently, in [2] it is

shown that the group of all homeomorphisms on R is a subgroup of the group

of all causal automorphisms on R2
1, and thus the dimensional of group of all

causal automorphisms on R2
1 is infinite. This result is different from the case

of n > 3.

The causally admissible system which has been developed in [4], is the main

tool to introduce the standard form of causal automorphism on R2
1, that is

given by Kim in [3]. He has shown that, in causal theoretic viewpoint, R2
1 has

much more symmetry than Rn1 has for n > 3. The standard form of causal

automorphism on R2
1 is stated in Theorem 4.4 in [3] as follows:

Let F : R2
1 → R2

1 be a causal automorphism. Then, there

exist a continuous function g : R → R and a homeomorphism

f : R → R which satisfy sup(g ± f) = ∞, inf(g ± f) = −∞
and ∣∣∣ g(t+ δt)− g(t)

f(t+ δt)− f(t)

∣∣∣ < 1

for all t and δt, such that if f is increasing, then F is given by

F (x, y) =

( f(x−y)+f(x+y)
2 + g(x+y)−g(x−y)

2 , f(x+y)−f(x−y)
2 + g(x+y)+g(x−y)

2 )

and if f is decreasing, then we have

F (x, y) =

( f(x+y)+f(x−y)
2 + g(x−y)−g(x+y)

2 , f(x−y)−f(x+y)
2 + g(x+y)+g(x−y)

2 ).

Conversely, for any functions f and g which satisfy the above

conditions, the function F : R2
1 → R2

1 defined as above is a

causal automorphism.

In this paper, we show that every spacelike Cauchy surface Σ of 2-dimensional

Minkowski spacetime R2
1 can consider as a graph of some continuous function

f : R → R. In Proposition 4.2 and Proposition 4.3 we reconstruct the causal

relation ” 6 ” on two-dimensional Minkowski spacetime R2
1 in a new manner

only by using the usual order relation ” 6 ” on R and the absolute value of real

numbers . In view of these results we show that every compact and connected

subset of Σ is both future causally admissible subset and past causally ad-

missible subset of R2
1. Therefore, the set of all compact and connected subset
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of Σ is equal to the causally admissible system C on spacelike Cauchy sur-

face Σ (see Theorem 4.13). Finally, in Theorem 4.14 we prove that (future or

past) causally admissible function and homeomorphism between two spacelike

Cauchy surfaces coincide for two-dimensional Minkowski spacetime R2
1.

2. Basics on causality theory

In this section we introduce some basic notation and facts about causality

theory on spacetimes, some good references are [7], [8] and [16].

A spacetimeM, is a smooth, connected, Housdorff, time-orientable n-dimensional

Lorentzian manifold with signature (−,+, ...,+). Every v ∈ TpM is called time-

like (null, spacelike, resp.) if its inner product with itself is less than (equal

to, greater than, resp.) zero. Let γ : I → M be a smooth curve in M. γ is

said to be timelike (spacelike, null, causal) if its tangent is everywhere timelike

(spacelike, null, causal, resp.). Since M is time-orientable, then it admits a

smooth timlike vector field X. A timlike (resp. causal) curve γ : I → M is

said to be future directed provided each tangent vector γ
′
(t), is future directed,

for all t ∈ I (i.e. 〈Xγ(t), γ
′
(t)〉 < 0). Past-directed timelike and causal curves

are defined in a time-dual manner. If there exists a future-directed timelike

curve inM from p to q, we write p� q and say that q lies in the chronological

future of p or p lies in the chronological past of q. Moreover, p < q means there

exists a future-directed causal curve from p to q, and we say that q lies in the

causal future of p or p lies in the causal past of q. We shall use the notation

p 6 q to mean p = q or p < q. The relation p 6 q but not p� q is written as

p→ q and is termed as horismos. A future (past, resp.) directed causal curve

γ is said to be future (past, resp.) inextendible if it has no future (past, resp.)

endpoint. A subset S ⊂ M is achronal (acausal) provided no two points in

S are chronologically (causally) related. Now we will state some of the basic

properties of causal relations.

Proposition 2.1. Let p, q, r ∈M;

(i) If p 6 q and q � r, then p� r.

(ii) If p� q and q 6 r, then p� r.

Proof. See [16], Proposition 2.18. �

Definition 1. Given any point p in a spacetime M, the timelike (chronolog-

ical) future and causal future of p, denoted I+(p) and J+(p), respectively are

defined as I+(p) = {q ∈ M : p � q} and J+(p) = {q ∈ M : p 6 q}. The

timelike (chronological) past and causal past of p, denoted by I−(p) and J−(p),

respectively are defined in a time-dual manner in terms of past directed timelike

and causal curves. The chronological or causal future of any subset S ⊂ M is
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defined by

I+(S) =
⋃
p∈S

I+(p), J+(S) =
⋃
p∈S

J+(p),

respectively. I−(S) and J−(S) are defined in a time-dual manner.

It is known that for any S ⊂M, I+(S) is always open. A number of results

in this paper, require some of causality conditions such as follows.

A spacetime M is said to be strongly causal at p, if p has an arbitrarily

small neighborhood U such that no causal curve intersects U in a disconnected

set.A spacetime M is said to be strongly causal if strong causality holds at all

p in M. There is an interesting connection between strong causality and the

so called Alexandrov topology. Since I+(p) is open, I+(p) ∩ I−(q) is open for

any p and q in M. The sets of the form I+(p) ∩ I−(q) define a basis for a

topology onM, which is called the Alexandrov topology ofM. This topology

is in general more coarse than the manifold topology ofM. However It can be

shown that the Alexandrov topology agrees with the given manifold topology

if and only if the spacetime M is strongly causal .

There is a fundamental causality condition for a spacetime which is called

the globally hyperbolicity and it is very important for us in this paper. Mathe-

matically, global hyperbolicity plays a role analogous to geodesic completeness

in Riemannian geometry, that any pair of causally related points can be joined

by a causal geodesic with maximal length.

Definition 2. A spacetime M is said to be globally hyperbolic provided M is

strongly causal and the sets J+(p)∩ J−(q) are compact for any p and q in M.

A hypersurface H in M is an embedded topological submanifold without

boundary of codimension 1 in M. We can regard H as a subset of M and,

then, H will be closed if it is a closed subset of M. A spacelike hypersurface

is an embadded smooth hypersurface such that its tangent space at each point

is spacelike. A Cauchy surface in M is a subset Σ that is met exactly once

by every inextendible timelike curve in M. Then, Σ will be a closed achronal

connected topological hypersurface and it is intersected by any inextendible

causal curve (see [8], Lemma 14.29). About Cauchy surfaces we state the

following facts.

Proposition 2.2. Let Σ be a Cauchy surface in spacetime M and let γ be an

inextendible causal curve in M such that t1 < t2 and γ(t1), γ(t2) ∈ Σ for some

real numbers t1, t2. Then, for each t1 < t < t2, γ(t) ∈ Σ.

Proof. Suppose γ(t) ∈ Σ fails for some t1 < t < t2. Then, γ(t) ∈ I+(Σ) or

γ(t) ∈ I−(Σ). If γ(t) ∈ I+(Σ) then there exists p ∈ Σ such that, p� γ(t) and

since γ(t) 6 γ(t2), by proposition 2.1 (i), we imply that p � γ(t2). This is a

contradiction because Σ is achronal. If γ(t) ∈ I−(Σ) then there exists q ∈ Σ

such that, γ(t) � q and since γ(t1) 6 γ(t), by proposition 2.1 (i), we imply
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that γ(t1)� q. This is a contradiction because Σ is achronal.

These contradictions seem from the assumption that γ(t) ∈ Σ fails for some

t1 < t < t2. Hence, γ(t) ∈ Σ for each t1 < t < t2. �

In view of proposition 2.2, we note that the intersection of a Cauchy surface

Σ with an inextendible causal curve in M may be a closed geodesic segment

instead a single point.

Proposition 2.3. Let Σ be a spacelike Cauchy surface in spacetimeM. Then,

Σ is met exactly once by every inextendible causal curve in M. In particular,

Σ is a causal.

Proof. Let γ be an inextendible causal curve in M. Then, by Lemma 14.29 in

[8], γ intersect Σ. Now, suppose for some real numbers t1 and t2, we have t1 < t2
and γ(t1), γ(t2) ∈ Σ. Then, by proposition 2.2, for each t ∈ [t1, t2], γ(t) ∈ Σ.

Since Σ is achronal, γ|[t1,t2] is a null curve segment. This is a contradiction

because Σ is spacelike Cauchy surface. Therefore, Σ is met exactly once by γ

and the proof is complete. �

It is known that a spacetime M is globally hyperbolic if and only if there

exists an spacelike Cauchy surface Σ on M and then M is diffeomorphic to

R×Σ, where Σ is a spacelike Cauchy surface inM [11]. Also, any two Cauchy

surfaces in M are homeomorphic (see [8], Corollary 14.32). Furthermore, any

two spacelike Cauchy surfaces in globally hyperbolic spacetime M are diffeo-

morphic (see [11], Lemma 2.2).

3. Causally admissible systems

Throughout this paper we assume thatM is a globally hyperbolic spacetime

with a non-compact, smooth, spacelike Cauchy surface Σ. Let C+ and C− be

respectively the sets of all future and past causally admissible subsets of M
with respect to Σ. That is

C+ = {S+
p = J−(p) ∩ Σ : p ∈ J+(Σ)}

and

C− = {S−p = J+(p) ∩ Σ : p ∈ J−(Σ)}
and they are called future and past admissible systems respectively. We note

that S+
p and S−q are compact, connected subsets of Σ for each p ∈ J+(Σ) and

each q ∈ J−(Σ). Let C = (C+, C−). It is called causally admissible system on

Σ.

Some important properties of the causally admissible subsets are the follow-

ing (see [2]):

Theorem 3.1. Let Σ is non-compact Cauchy surface of M;

(i) If p, q ∈ J+(Σ), then p 6 q if and only if S+
p ⊆ S+

q .
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(ii) If p, q ∈ J−(Σ), then p 6 q if and only if S−p ⊇ S−q .

(iii) if p ∈ J−(Σ) and q ∈ J+(Σ), then p 6 q if and only if S−p ∩ S+
q 6= φ.

In the following proposition we review some known results about the causally

admissible subsets.

Proposition 3.2. For a spacetime M with a non-compact Cauchy surface Σ;

(i) If p, q ∈ J+(Σ), then S+
p = S+

q if and only if p = q.

(ii) If p, q ∈ J−(Σ), then S−p = S−q if and only if p = q.

Proof. See [4]. �

Some of the most important results in this paper, are about the causal

or chronological isomorphisms between two spacetimes. Thus we are lead to

introduce them as follows.

Definition 3. A bijective function f : M → M′
between two spacetimes

is called a causal isomorphism if p 6 q ⇔ f(p) 6 f(q) and a chronological

isomorphism if p � q ⇔ f(p) � f(q). If there exists a causal isomorphism

(chronological isomorphism, resp.) between M and M′
then we say that M

and M′
are causally isomorphic (chronologically isomorphic, resp.).

In the following we will state some results about the causal isomorphisms

which can be found in [13], [14] and [15].

Theorem 3.3. For a bijection f :M→M′
between two chronological space-

times, we have the following properties.

(i) f is a causal isomorphism if and only if f is a chronological isomorphism.

(ii) If f is a causal isomorphism, then f is a smooth conformal diffeomorphism.

Suppose that M and M′
are globally hyperbolic spacetimes with non-

compact Cauchy surfaces Σ and Σ
′

, respectively. Let C+ and C
′+

be the

corresponding future admissible systems for Σ and Σ
′

respectively, and we de-

note these by (Σ, C+) and (Σ
′
, C
′+

). Then, since the causal relation is encoded

into C through the relation of inclusion, it is not difficult to see the following

theorem.

Theorem 3.4. Two spacetimesM andM′
with non-compact Cauchy surfaces

are causally isomorphic if and only if there exists a causally admissible function

f : (Σ, C)→ (Σ
′
, C
′
) between the corresponding causally admissible systems.

Proof. See [4], Theorem 5.4. �

Since R2
1 is globally hyperbolic with the non-compact Cauchy surface, we

can apply the theory of a causally admissible system to analyze causal auto-

morphisms on R2
1. This is the main tool for our goal in this paper.

In the next section, we use the following theorem to assert our main results.
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Theorem 3.5. Let γ : R → R2
1 given by t → (f(t), g(t)) be an injective,

continuous curve in R2
1. Then, γ(R) is an acausal Cauchy surface if and only if

f is a homeomorphism, sup(g±f) =∞, inf(g±f) = −∞ and
∣∣ g(t+δt)−g(t)
f(t+δt)−f(t)

∣∣ <
1 for all t and δt 6= 0.

Proof. See [3], Theorem 4.3. �

Example 3.6. Let γ : R → R2
1 given by t → (f(t), g(t)) where f(t) = t and

g(t) = α cos t for all t ∈ R and 0 < α < 1. Then, the curve γ is an injective and

continuous curve in R2
1 and the component functions f : R→ R and g : R→ R

of the curve γ have the following properties. The component function f is a

homeomorphism, sup(g ± f) = ∞ and inf(g ± f) = −∞. By using the mean

value theorem of calculus we have∣∣ g(t+ δt)− g(t)

f(t+ δt)− f(t)

∣∣ < 1

for all t and δt 6= 0. In view of Theorem 3.5, γ(R) (the graph of the cosine

function) is an acausal Cauchy surface of R2
1.

4. Main Results

In this section we assume that Σ is a non-compact spacelike Cauchy surface

of two-dimensional Minkowski spacetime R2
1. Also, we assume that A is the set

of all compact and connected subsets of Σ. We use y as the time coordinate of

R2
1 and we suppose that the future direction on R2

1 is the positive direction on

y axis. For all r ∈ R2
1 and m ∈ R we set `r,m as the line that passes through

the point r and has slope m.

Proposition 4.1. Let Σ be a non-compact spacelike Cauchy surface of two-

dimensional Minkowski spacetime R2
1. Then, there exists a continuous function

f : R→ R such that Σ = {(t, f(t)) : t ∈ R}.

Proof. Let π2 : R2
1 → R be the projection map defined by π2(x, y) = y and let

for each t ∈ R, γt : R→ R2
1 be the timelike curve in R2

1 defined by γt(y) = (t, y).

We can define the function f : R→ R by f(t) = π2(γt(R)∩Σ) the function f is

well-defined, because Σ is Cauchy surface and γt(R) is the graph of the timelike

curve γt and γt intersects Σ exactly once. In the following, we will prove that f

is continuous and Σ = {(t, f(t)) : t ∈ R}. Let Ry0 = {(x, y) ∈ R2
1 : y = y0} (we

know that Ry0 is a Cauchy surface of R2
1). By Corollary 14.32 in [8], there exists

a homeomorphism F : Ry0 → Σ given by (x, y0) → (g(x, y0), h(x, y0)). We

know that the map ι : R→ Ry0 defined by ι(x) = (x, y0) is a homeomorphism

and it implies that the map Foι : R→ Σ defined by Foι(x) = (goι(x), hoι(x))

is a homeomorphism and Foι(R) = Σ. Then, by theorem 3.5, the function

goι : R → R is a homeomorphism and the map (Foι)o(goι)−1 : R → Σ is a

homeomorohism such that (Foι)o(goι)−1(t) = (t, (hoι)o(goι)−1(t)). Therefore,

the function (hoι)o(goι)−1 : R → R is continuous. We note that for all t ∈ R
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the points (t, (hoι)o(goι)−1(t)) and (t, f(t)) are on the Cauchy surface Σ and

they are also on the timelike curve γt. Since Σ is a Cauchy surface, we must

have f(t) = (hoι)o(goι)−1(t) and it means that f = (hoι)o(goι)−1. This prove

that the function f is continuous and

Σ = (Foι)o(goι)−1(R) = {(t, (hoι)o(goι)−1(t)) : t ∈ R} = {(t, f(t)) : t ∈ R}.

�

Recall that on a spacetime M the causal relation ” 6 ” has been defined as

follows:

For all p, q ∈M, p 6 q if and only if there exists a future directed causal curve

from p to q or p = q. In the two-dimensional Minkowski spacetime R2
1, we can

state the causal relation ” 6 ” as the following proposition.

Proposition 4.2. Let (a, b), (x, y) ∈ R2
1. Then, (x, y) ∈ J+(a, b) if and only if

(x, y) satisfies in one of the following conditions

(i) (x, y) = (a, b),

(ii) b < y and |x− a| 6 y − b.

Proof. If (x, y) = (a, b), then (x, y) ∈ J+(a, b) (by definition of J+(a, b)). Let

us assume that (x, y) 6= (a, b). By the future direction on R2
1 we know that if

b > y then (x, y) /∈ J+(a, b). Let x 6= a and b < y. Define f : R− {a} → R by

f(t) = b−y
a−t , where f(t) equals to the slope of the line segment from (a, b) to

(t, y). We know that f is strictly decreasing on its domain. Since R2
1 is globally

hyperbolic, (t, y) ∈ J+(a, b) if and only if the line segment from (a, b) to (t, y)

is a causal curve and by definition of f this is equivalent to say that |f(t)| > 1.

Since f is strictly decreasing, f(a+ b− y) = −1, and f(a− b+ y) = 1 then

−∞ = limt→a− f(t) < f(t) 6 −1⇔ a− (y− b) 6 t < a⇔ −(y− b) 6 t− a < 0

and

1 6 f(t) <∞ = limt→a+ f(t)⇔ a < t 6 a+ (y − b)⇔ 0 < t− a < y − b (see

Figure 1).

Therefore, if x 6= a and b < y we have (x, y) ∈ J+(a, b) if and only if

0 < |x− a| 6 y − b
If x = a and b < y, then γ : (b, y) → R2

1 given by γ(t) = (a, t) is a future

directed timelike curve from (a, b) to (x, y), then (x, y) ∈ J+(a, b).

Hence, we prove that if b < y, then (x, y) ∈ J+(a, b) if and only if |x−a| 6 y−b.
This complete the proof. �

Proposition 4.2 has a time dual as the following proposition and we can

prove it by a similar approach as in proposition 4.2 (see Figure 2).
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Figure 1. (x, y) ∈ J+(a, b) ⇔ (x, y) = (a, b) or b > y and

|x− a| 6 y − b

Proposition 4.3. Let (a, b), (x, y) ∈ R2
1. Then, (x, y) ∈ J−(a, b) if and only if

(x, y) satisfies in one of the following conditions;

(i) (x, y) = (a, b).

(ii) b > y and |x− a| 6 b− y.

Remark 4.4. Applying proposition 4.1, we can find the continuous function

f : R → R such that the map F : R → Σ defined by F (t) = (t, f(t)) is a

homeomorphism. Therefore,

Σ = F (R) = {(t, f(t)) : t ∈ R}.
Let A ∈ A (recall that A is the set of all compact and connected subsets of Σ).

Since F is a homeomorphism, F−1(A) is a compact and connected subsets of R
and there exist a, b ∈ R such that F−1(A) = [a, b]. Therefore, A = {(t, f(t)) :

a 6 t 6 b}.
Now, set p = (b, f(b)) and q = (a, f(a)). Let us consider the lines `p,1, `p,−1

and `q,1, `q,−1 as follows,

`p,1 : y = x− b+ f(b),

`p,−1 : y = −x+ b+ f(b),

`q,1 : y = x− a+ f(a),

`q,−1 : y = −x+ a+ f(a).

We know that `p,1 is perpendicular to `q,−1 and `p,−1 is perpendicular to `q,1
are perpendicular. We can find the points of their intersections by solving the

following systems of linear equations.
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Figure 2. (x, y) ∈ J−(a, b) ⇔ (x, y) = (a, b) or b > y and

|x− a| 6 b− y

 y = x− b+ f(b)

y = −x+ a+ f(a)
(4.1)

 y = −x+ b+ f(b)

y = x− a+ f(a)
(4.2)

We set R and L as the solution of the system of linear equations (4.1) and

(4.2), respectively (see Figure 3). It is easy to see that

R =
(a+ b

2
− f(b)− f(a)

2
,−b− a

2
+
f(a) + f(b)

2

)
and

L =
(a+ b

2
+
f(b)− f(a)

2
,
b− a

2
+
f(a) + f(b)

2

)
.

There are some interesting properties between the points L, R, p and q,

where we state them as follows.

Proposition 4.5. L ∈ J+(p) ∩ J+(q) and R ∈ J−(p) ∩ J−(q).

Proof. We know that the points p = (b, f(b)) and q = (a, f(a)) are on the

spacelike Cauchy surface Σ (see Figure 3).

Step 1: In this step we want to show that L ∈ J+(p). Using Theorem 3.5, we

have
f(b)− f(a)

b− a
< 1⇒ f(a)− f(b)

b− a
> −1⇒ 1 +

f(a)− f(b)

b− a
> 0
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Figure 3. Spacelike Cauchy surface Σ

and this yields that

b− a+ f(a)− f(b) > 0⇒ b− a+ f(b) + f(a) > 2f(b).

Thus,
b− a

2
+
f(b) + f(a)

2
> f(b). (4.3)

Since the line `p,−1 passes through the point L, we deduce that the

coordinate of the point L satisfies in the equation of the line `p,−1 and

we have

f(b)−
(a+ b

2
+
f(b)− f(a)

2

)
=
(b− a

2
+
f(b) + f(a)

2

)
− b.

Then,∣∣∣(a+ b

2
+
f(b)− f(a)

2

)
− f(b)

∣∣∣ =
(b− a

2
+
f(b) + f(a)

2

)
− b.

This yeilds that,

∣∣∣(a+ b

2
+
f(b)− f(a)

2

)
− f(b)

∣∣∣ 6 (b− a
2

+
f(b) + f(a)

2

)
− b. (4.4)

In view of Proposition 4.2 and inequalities 4.3 and 4.4, we see that

L ∈ J+(p).

Step 2: In this step we will prove that L ∈ J+(q). Using Theorem 3.5, we have

f(b)− f(a)

b− a
> −1⇒ 1 +

f(b)− f(a)

b− a
> 0

and this yields that

b− a+ f(b)− f(a) > 0⇒ b− a+ f(b) + f(a) > 2f(a).
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Thus,

b− a
2

+
f(b) + f(a)

2
> f(a). (4.5)

Since the line `q,1 passes through the point L, we deduce that the

coordinate of the point L satisfies in the equation of the line `q,1 and

we have(a+ b

2
+
f(b)− f(a)

2

)
− a =

(b− a
2

+
f(b) + f(a)

2

)
− f(a).

Then,∣∣∣(a+ b

2
+
f(b)− f(a)

2

)
− a
∣∣∣ =

(b− a
2

+
f(b) + f(a)

2

)
− f(a).

This yields that,

∣∣∣(a+ b

2
+
f(b)− f(a)

2

)
− a
∣∣∣ 6 (b− a

2
+
f(b) + f(a)

2

)
− f(a). (4.6)

In view of Proposition 4.2 and inequalities (4.5) and (4.6), we see that

L ∈ J+(q). Therefore, by claims of Step 1 and Step 2 we can conclude

that L ∈ J+(p) ∩ J+(q).

Step 3: In this step we will show that R ∈ J−(p). Using Theorem 3.5, we have

f(b)− f(a)

b− a
> −1⇒ f(b)− f(a) > −(b− a)

and this yields that

a− b+ f(a)− f(b) < 0⇒ a− b+ f(a) + f(b) < 2f(b).

Thus,

(
− b− a

2
+
f(b) + f(a)

2
< f(b)

)
. (4.7)

Since the line `p,1 passes through the point R, we deduce that the

coordinate of the point R satisfies in the equation of the line `p,1 and

we have

b−
(a+ b

2
− f(b)− f(a)

2

)
= f(b)−

(
− b− a

2
+
f(a) + f(b)

2

)
.

Then,∣∣∣b− (a+ b

2
− f(b)− f(a)

2

)∣∣∣ = f(b)−
(
− b− a

2
+
f(a) + f(b)

2

)
.

This yields that,
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∣∣∣(a+ b

2
− f(b)− f(a)

2

)
− b
∣∣∣ 6 f(b)−

(
− b− a

2
+
f(a) + f(b)

2

)
. (4.8)

In view of Proposition 4.3 and inequalities (4.7) and (4.8), we see that

R ∈ J−(p).

Step 4: In this step we want to prove that R ∈ J−(q). Using Theorem 3.5, we

have
f(b)− f(a)

b− a
< 1⇒ −1 +

f(b)− f(a)

b− a
< 0

and this yields that

a− b+ f(b)− f(a) < 0⇒ a− b+ f(a) + f(b) < 2f(a).

Thus,

(
− b− a

2
+
f(a) + f(b)

2

)
< f(a) (4.9)

Since the line `q,−1 passes through the point R, we deduce that the

coordinate of the point R satisfies in the equation of the line `q,−1 and

we have(a+ b

2
− f(b)− f(a)

2

)
− a = f(a)−

(
− b− a

2
+
f(a) + f(b)

2

)
.

Then,∣∣∣(a+ b

2
− f(b)− f(a)

2

)
− a
∣∣∣ = f(a)−

(
− b− a

2
+
f(a) + f(b)

2

)
.

This yeilds that,

∣∣∣(a+ b

2
− f(b)− f(a)

2

)
− a
∣∣∣ 6 f(a)−

(
− b− a

2
+
f(a) + f(b)

2

)
. (4.10)

In view of Proposition 4.3 and inequalities (4.9) and (4.10), we see

that R ∈ J−(q). By using the results of Step 3 and Step 4, we have

R ∈ J−(p) ∩ J−(q).

These complete the proof. �

Corollary 4.6. L ∈ I+(Σ) and R ∈ I−(Σ).

Proof. Applying Proposition 4.5, we see that L ∈ J+(p). Since p ∈ Σ, we

deduce that L ∈ J+(Σ) = Σ ∪ I+(Σ). The inextendible future directed causal

curve γ : R→ R2
1 defined by γ(t) = (t,−t+b+f(b)), passes through the points

p and L. In view of Proposition 2.3, we infer that L is not a member of Σ and

we conclude L ∈ I+(Σ).

Employing a similar approach as above, we see that R ∈ I−(Σ). �
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Corollary 4.7. L ∈ I+(R).

Proof. We know that

R =
(a+ b

2
− f(b)− f(a)

2
,−b− a

2
+
f(a) + f(b)

2

)
,

and

L =
(a+ b

2
+
f(b)− f(a)

2
,
b− a

2
+
f(a) + f(b)

2

)
.

The slope of the line passes through the points R and L is

m =

(b− a
2

+
f(a) + f(b)

2

)
−
(
− b− a

2
+
f(a) + f(b)

2

)
(a+ b

2
+
f(b)− f(a)

2

)
−
(a+ b

2
− f(b)− f(a)

2

) =
b− a

f(b)− f(a)

Moreover, we know that the points p = (b, f(b)) and q = (a, f(a)) are on the

spacelike Cauchy surface Σ. Using Theorem 3.5, we see that

∣∣∣f(b)− f(a)

b− a

∣∣∣ < 1⇒
∣∣∣ b− a
f(b)− f(a)

∣∣∣ > 1,

This means that the line segment passes through the points R and L in the

globally hyperbolic spacetime R2
1 is timelike, and then we conclude that L ∈

I+(R). �

Proposition 4.8. Let f , a, L and R be those notions which have been stated

in Remark 4.4. If t < a then (t, f(t)) /∈ J−(L) and (t, f(t)) /∈ J+(R).

Proof. At first we show that (t, f(t)) /∈ J−(L). If (t, f(t)) = L, then the future

directed causal curve γ : R → R2
1 defined by γ(s) = −s + a + f(a) intersects

spacelike Cauchy surface Σ in two distinct points q = (a, f(a)) and (t, f(t)). In

view of Proposition 2.3, it is a contradiction. It yields that (t, f(t)) 6= L.

We know that one and only one of the following statements is true,

(i) f(t) =
b− a

2
+
f(b) + f(a)

2
,

(ii) f(t) >
b− a

2
+
f(b) + f(a)

2
,

(iii) f(t) <
b− a

2
+
f(b) + f(a)

2
.
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Let (i) be true. Since (t, f(t)) 6= L, we must have t 6= a+ b

2
+
f(b) + f(a)

2
.

Using Proposition 4.3, one can observe (t, f(t)) /∈ J−(L).

Let (ii) be true. In view of Proposition 4.3, we see (t, f(t)) /∈ J−(L).

Ultimately, let (iii) be true. Applying Theorem 3.5, we have

f(b)− f(t)

b− t
> −1⇒ f(b)− f(t)

t− b
< 1⇒ t− b > f(b)− f(t).

It yields that

t− a

2
− b

2
− f(b)

2
+
f(a)

2
>
b

2
− a

2
+
f(b)

2
+
f(a)

2
− f(t).

Then,

t−
(a+ b

2
+
f(b)− f(a)

2

)
>
(b− a

2
+
f(b) + f(a)

2

)
− f(t).

By Proposition 4.3, we have (t, f(t)) /∈ J−(L) and the proof in this case is

complete. Now it is enough to show that (t, f(t)) /∈ J+(R). If (t, f(t)) = R

then the future directed causal curve α : R → R2
1 defined by α(s) = s − a +

f(a) intersects spacelike Cauchy surface Σ in two distinct points q = (a, f(a))

and (t, f(t)). In view of Proposition 2.3, it is a contradiction. It yields that

(t, f(t)) 6= R.

We know that one and only one of the following statements is true,

(iv) f(t) = −b− a
2

+
f(b) + f(a)

2
,

(v) f(t) > −b− a
2

+
f(b) + f(a)

2
,

(vi) f(t) < −b− a
2

+
f(b) + f(a)

2
.

Let (iv) be true. Since (t, f(t)) 6= R, we must have t 6= a+ b

2
− f(b)− f(a)

2
.

Using Proposition 4.2, one can observe (t, f(t)) /∈ J+(R).

Let (v) be true. In view of Proposition 4.2, we see (t, f(t)) /∈ J+(R).

Ultimately, let (vi) be true. Applying Theorem 3.5, we have

f(a)− f(t)

a− t
> −1⇒ f(a)− f(t)

t− a
< 1⇒ t− a < f(a)− f(t).

It yields that
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t− a

2
− b

2
+
f(b)

2
− f(a)

2
< −f(t)− b

2
+
a

2
+
f(a)

2
+
f(b)

2
.

Then,

t−
(a+ b

2
− f(b)− f(a)

2

)
< −

(
f(t)−

(
− b− a

2
+
f(b) + f(a)

2

))
.

By proposition 4.2, we have (t, f(t)) /∈ J−(L) and this complete the proof. �

Applying a similar approach as the proof of proposition 4.8, we can prove

the following proposition.

Proposition 4.9. Let f , b, L and R be those notions which have been stated

in Remark 4.4. If b < t then (t, f(t)) /∈ J−(L) and (t, f(t)) /∈ J+(R).

Proposition 4.10. Let f , a, b, L and R be those notions which have been stated

in Remark 4.4. If a 6 t 6 b then (t, f(t)) ∈ J−(L) and (t, f(t)) ∈ J+(R).

Proof. For showing (t, f(t)) ∈ J−(L) by Proposition 4.3 we will prove the

following inequqlities

f(t) <
b− a

2
+
f(b) + f(a)

2
,

∣∣∣t− (a+ b

2
+
f(b)− f(a)

2

)∣∣∣ < (b− a
2

+
f(b) + f(a)

2

)
− f(t).

Applying Theorem 3.5, we have

f(b)− f(t)

b− t
> −1⇒ f(t)− f(b)

b− t
< 1.

It yields that f(t)− f(b)

(b− t)(t− a)
<

1

t− a
=

b− t
(b− t)(t− a)

. (4.11)

On the other hand in view of Theorem 3.5, we have

f(t)− f(a)

t− a
< 1

Therefore, f(t)− f(a)

(t− a)(b− t)
<

1

b− t
=

t− a
(b− t)(t− a)

. (4.12)

Using (4.11) and (4.12), we obtain that
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f(t)− f(b)

(b− t)(t− a)
+

f(t)− f(a)

(t− a)(b− t)
<

b− t
(b− t)(t− a)

+
t− a

(b− t)(t− a)
.

It yields that

f(t)− f(b) + f(t)− f(a) < b− t+ t+ a⇒ 2f(t) < b− a+ f(b) + f(a).

Then, we conclude

f(t) <
b− a

2
+
f(b) + f(a)

2
.

We apply Theorem 3.5 again and we see that

f(b)− f(t)

b− t
> −1⇒ f(b)− f(t)

t− b
< 1⇒ t− b < f(b)− f(t).

It implies that

2t− 2b < 2f(b)− 2f(t)⇒ 2t−a− b− f(b) + f(a) < b−a+ f(b) + f(a)− 2f(t).

Then, we observe that

t
(
−
(a+ b

2
+
f(b)− f(a)

2

)
<
(b− a

2
+
f(b) + f(a)

2

)
− f(t)

)
. (4.13)

Using Theorem 3.5 one more time, we have

f(t)− f(a)

t− a
< 1⇒ f(t)− f(a) < t− a.

Thus, we infer that

2f(t)−2f(a) < 2t−2a⇒ 2f(t)− b+a−f(b)−f(a) < 2t−a− b−f(b) +f(a).

Therefore,
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(
−
((b− a

2
+
f(b) + f(a)

2

)
− f(t)

)
< t
(
−
(a+ b

2
+
f(b)− f(a)

2

))
. (4.14)

Using (4.13) and (4.14), one can observe that

∣∣∣t− (a+ b

2
+
f(b)− f(a)

2

)∣∣∣ < (b− a
2

+
f(b) + f(a)

2

)
− f(t).

Hence, we prove that (t, f(t)) ∈ J−(L).

In view of Proposition 4.2 and a similar approach as above, one can prove

(t, f(t)) ∈ J+(R). �

Theorem 4.11. Let A, L and R be those notions which have been stated in

Remark 4.4. Then S+
L = A and S−R = A.

Proof. Let r ∈ S+
L = J−(L) ∩ Σ. Applying Proposition 4.1, there exists t ∈ R

such that r = (t, f(t)). Since r = (t, f(t)) ∈ J−(L), we must have a 6 t 6 b

because if t < a or t > b then in view of proposition 4.8 and Propostion 4.9,

we have (t, f(t)) /∈ J−(L). Then, we see that r = (t, f(t)) ∈ A. It means that

S+
L ⊂ A.

Now, let (t, f(t)) ∈ A. Using Proposition 4.10, we obtain (t, f(t)) ∈ J−(L).

Since A ⊂ Σ, we have (t, f(t)) ∈ J−(L)∩Σ = S+
L . Then, we infer that A ⊂ S+

L .

Therefore, S+
L = A.

Applying a similar approach as above, we see that S−R = A. �

We know that every future or past causally admissible subset of Σ is com-

pact and connected. By the above theorem we can show that every compact

and connected subset A of Σ is a future or past causally admissible subset.

Therefore, we have the following corollary.

Corollary 4.12. Let Σ be anon-compact spacelike Cuachy surface on R2
1 and

let C+, C− and C be respectively the future admissible, past admissible and

admissible system on Σ. Then C+ = C− = C.

Theorem 4.13. Let C be causally admissible system on Σ and let A be the

set of all compact and connected subsets of Σ. Then, C = A.

Proof. For each p ∈ J+(Σ) and q ∈ J−(Σ), we know that the sets S+
p and S−q

are compact and connected subsets of Σ. Therefore, C ⊂ A.

Let A be a compact and connected subset of Σ. In view of Proposition 4.11,

there are the points L and R such that S+
L = A and S−R = A. It means that

A is a future causal set and a past causal set of two-dimensional Minkowski

spacetime R2
1, respectively. Therefore, we have A ∈ C. It yields that A ⊂ C.

Hence, we prove that C = A. �
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Theorem 4.14. Let Σ and Σ
′

be two non-compact spacelike Cauchy surfaces

of two-dimensional Minkowski spacetime R2
1 and let f : Σ→ Σ

′
be a bijaction.

Then the following statements are equivalent,

(i) f is a future causally admissible function,

(ii) f is a past causally admissible function,

(iii) f is a causally admissible function,

(iv) f is a homeomorphism.

Proof. By 4.12 we can see that (i), (ii) and (iii) are equivalent. The proof of

(iii)⇒(iv) has been obtained by Theorem 3.4, which is say that every causally

admissible function f : Σ → Σ
′

can be extend to a causally isomorphism

between their manifolds such as f̃ : R2
1 → R2

1. Therefore, f = f̃ |Σ : Σ → Σ
′

is

a homeomorphism. Now suppose that f : Σ → Σ
′

is a homeomorphism then,

for every S ∈ C, f(S) is a compact connected subset of Σ
′
. So by Theorem

4.13 we have f(A) ∈ C ′ and it is show that (iv)⇒(iii). �

Remark 4.15. By Theorem 4.14 and Theorem 3.4, every homeomorphism

between two non-compact Cuachy surfaces Σ, Σ
′

of R2
1, determines a causal

isomorphism of R2
1 to itself.

References

1. E. C. Zeeman, Causality implies the Lorentz group, J. Math. Phys. 5(1964), 490.

2. D. H. Kim, An Imbedding of Lorentzian manifolds, Class. Quantum Gravity. 26(2009),

075004.

3. D. H. Kim, Causal automorphisms of two-dimensional Minkowski spacetime, Class.

Quantum Gravity. 27(2010), 075006.

4. D. H. Kim, A note on non-compact Cauchy surfaces, Class. Quantum Gravity. 25(2008),

238002.

5. V. V. Filippov, Basic topological structures of ordinary differential equations, Kluwer

Academic Publisher, Netherlands, 1998.

6. B. S. Choundhury and H. S. Mondal, Continuous representation of a globally hyperbolic

spacetime with non-compact Cauchy surfaces, Anal. Math. Phys. 5(2015), 183-191.

7. J. K. Beem, P. E. Ehrlich and K. L. Easley, Continuous representation of a globally

hyperbolic spacetime with non-compact Cauchy surfaces, Anal. Math. Phys. 5(2015),

183-191.

8. B. O’Neil, Semi-Riemannian geometry with applications to relativity, Academic Press,

1983.

9. A. N. Bernal and M. Sanchez, Globally hyperbolic spacetimes can be defined as causal

instead of strongly causal, Class. Quantum Gravity. 24(745) (2007).

10. R. Geroch, Domain of dependence, J. Math. Phys. 11(437) (1970).

11. A. N. Bernal and M. Sanchez, On smooth Cauchy hypersurfaces and Geroch’s splitting

theorem, Commun. Math. Phys. 243(2003), 461-470.

12. A. N. Bernal and M. Sanchez, Smoothness of time functions and the metric splitting of

globally hyperbolic spacetimes, Commun. Math. Phys. 257(43) (2005).

13. D. Malement, The class of continuous timelike curves determines the topology of space-

time, J. Math. Phys. 18(7) (1977), 1399-1404.



Causal automorphisms of two-dimensional Minkowski spacetime 31

14. E. Minguzzi and M. Sanchez, The causal hierarchy of spacetimes, Recent developments in

pseudo-Riemannian geometry, 299-358, ESI Lect. Math. Phys., Eur. Math. Soc., Zurich,

(2008).

15. S. W. Hawking, A. R. King and P. J. McCarthy, A new topology for curved space-

time which incorporates the causal, differential and conformal structure, J. Math. Phys.

17(174) (1976).

16. R. Penrose, Techniques of differential topology in relativity, the Society for Industrial

and Applied Mathematics (1972).

Received: 01.03.2025

Accepted: 20.04.2025


	1. Introduction
	2. Basics on causality theory
	3. Causally admissible systems
	4. Main Results
	References

