Journal of Finsler Geometry and its Applications Vol. 6, No. 2 (2025), pp 12-31 https://doi.org/10.22098/jfga.2025.16895.1149

Causal automorphisms of two-dimensional Minkowski spacetime and homeomorphisms between its Cauchy surfaces

Masoud Bahrami Seif Abad^a and Mehdi Sharifzadeh^{b*} \bigcirc

^aDepartment of Mathematics, Yasouj University, Yasouj, Iran ^bDepartment of Mathematics, Yasouj University, Yasouj, Iran

> E-mail: m.bahrami@std.yu.ac.ir E-mail: msharifzadeh@yu.ac.ir

Abstract. In this paper, we show that for two-dimensional Minkowski spacetime \mathbb{R}^2_1 with a non-compact Cauchy surface Σ , every compact and connected subset of Σ is a future and past causally admissible subset and it means that the set of all the future causally admissible subset of \mathbb{R}^2_1 with respect to Σ is equal to the set of all the set of all the past causally admissible subset of \mathbb{R}^2_1 with respect to Σ . Moreover it has been shown that for every spacelike Cauchy surfaces Σ , Σ' of the globally hyperbolic spactime \mathbb{R}^2_1 , every bijection $f: \Sigma \to \Sigma'$ can be consider as a homeomorphism or (future, past) causally admissible function.

Keywords: Lorentzian geometry, Globally hyperbolic, Order-isomorphism, Vietoris topology, Causally admissible system.

1. Introduction

The study of causal automorphisms on spasetime is very important because the existence of causal automorphisms on spasetime \mathcal{M} , implies the existence of some kind of symmetry on \mathcal{M} .

Copyright © 2025 The Author(s). Published by University of Mohaghegh Ardabili

^{*}Corresponding Author

AMS 2020 Mathematics Subject Classification: 06B35, 53C50, 83C99

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

In 1964, Zeeman introduced a standard form of causal automorphism on Minkowski spacetime \mathbb{R}_1^n for $n \ge 3$ [1]. Zeeman showed that any causal automorphism can be represented by a composite of orthochronous transformation, translation and dilatation and he classified all forms of causal automorphisms on \mathbb{R}_1^n with $n \ge 3$. In[1] Zeeman showed that the group of all causal automorphisms on \mathbb{R}_1^n is of finite dimensional when $n \ge 3$. Moreover, this result applies only when $n \ge 3$, and for two-dimensional Minkowski spacetime \mathbb{R}_1^2 the standard form of causal automorphism is not yet known. Recently, in [2] it is shown that the group of all homeomorphisms on \mathbb{R} is a subgroup of the group of all causal automorphisms on \mathbb{R}_1^2 , and thus the dimensional of group of all causal automorphisms on \mathbb{R}_1^2 is infinite. This result is different from the case of $n \ge 3$.

The causally admissible system which has been developed in [4], is the main tool to introduce the standard form of causal automorphism on \mathbb{R}_1^2 , that is given by Kim in [3]. He has shown that, in causal theoretic viewpoint, \mathbb{R}_1^2 has much more symmetry than \mathbb{R}_1^n has for $n \ge 3$. The standard form of causal automorphism on \mathbb{R}_1^2 is stated in Theorem 4.4 in [3] as follows:

Let $F : \mathbb{R}_1^2 \to \mathbb{R}_1^2$ be a causal automorphism. Then, there exist a continuous function $g : \mathbb{R} \to \mathbb{R}$ and a homeomorphism $f : \mathbb{R} \to \mathbb{R}$ which satisfy $sup(g \pm f) = \infty$, $inf(g \pm f) = -\infty$ and

$$\left|\frac{g(t+\delta t) - g(t)}{f(t+\delta t) - f(t)}\right| < 1$$

for all t and δt , such that if f is increasing, then F is given by

$$F(x,y) = \frac{F(x,y) = \frac{f(x-y) + f(x+y)}{2} + \frac{g(x+y) - g(x-y)}{2}, \frac{f(x+y) - f(x-y)}{2} + \frac{g(x+y) + g(x-y)}{2})$$

and if f is decreasing, then we have

$$F(x,y) = \left(\frac{f(x+y)+f(x-y)}{2} + \frac{g(x-y)-g(x+y)}{2}, \frac{f(x-y)-f(x+y)}{2} + \frac{g(x+y)+g(x-y)}{2}\right)$$

Conversely, for any functions f and g which satisfy the above conditions, the function $F : \mathbb{R}^2_1 \to \mathbb{R}^2_1$ defined as above is a causal automorphism.

In this paper, we show that every spacelike Cauchy surface Σ of 2-dimensional Minkowski spacetime \mathbb{R}^2_1 can consider as a graph of some continuous function $f: \mathbb{R} \to \mathbb{R}$. In Proposition 4.2 and Proposition 4.3 we reconstruct the causal relation " \leq " on two-dimensional Minkowski spacetime \mathbb{R}^2_1 in a new manner only by using the usual order relation " \leq " on \mathbb{R} and the absolute value of real numbers . In view of these results we show that every compact and connected subset of Σ is both future causally admissible subset and past causally admissible subset of \mathbb{R}^2_1 . Therefore, the set of all compact and connected subset

of Σ is equal to the causally admissible system C on spacelike Cauchy surface Σ (see Theorem 4.13). Finally, in Theorem 4.14 we prove that (future or past) causally admissible function and homeomorphism between two spacelike Cauchy surfaces coincide for two-dimensional Minkowski spacetime \mathbb{R}^2_1 .

2. Basics on causality theory

In this section we introduce some basic notation and facts about causality theory on spacetimes, some good references are [7], [8] and [16]. A spacetime \mathcal{M} , is a smooth, connected, Housdorff, time-orientable *n*-dimensional Lorentzian manifold with signature (-, +, ..., +). Every $v \in T_p \mathcal{M}$ is called timelike (null, spacelike, resp.) if its inner product with itself is less than (equal to, greater than, resp.) zero. Let $\gamma: I \to \mathcal{M}$ be a smooth curve in \mathcal{M} . γ is said to be timelike (spacelike, null, causal) if its tangent is everywhere timelike (spacelike, null, causal, resp.). Since \mathcal{M} is time-orientable, then it admits a smooth timlike vector field X. A timlike (resp. causal) curve $\gamma: I \to \mathcal{M}$ is said to be future directed provided each tangent vector $\gamma'(t)$, is future directed, for all $t \in I$ (i.e. $\langle X_{\gamma(t)}, \gamma'(t) \rangle < 0$). Past-directed timelike and causal curves are defined in a time-dual manner. If there exists a future-directed timelike curve in \mathcal{M} from p to q, we write $p \ll q$ and say that q lies in the chronological future of p or p lies in the chronological past of q. Moreover, p < q means there exists a future-directed causal curve from p to q, and we say that q lies in the causal future of p or p lies in the causal past of q. We shall use the notation $p \leq q$ to mean p = q or p < q. The relation $p \leq q$ but not $p \ll q$ is written as $p \rightarrow q$ and is termed as horismos. A future (past, resp.) directed causal curve γ is said to be future (past, resp.) inextendible if it has no future (past, resp.) endpoint. A subset $\mathcal{S} \subset \mathcal{M}$ is achronal (acausal) provided no two points in \mathcal{S} are chronologically (causally) related. Now we will state some of the basic properties of causal relations.

Proposition 2.1. Let $p, q, r \in \mathcal{M}$; (i) If $p \leq q$ and $q \ll r$, then $p \ll r$. (ii) If $p \ll q$ and $q \leq r$, then $p \ll r$.

Proof. See [16], Proposition 2.18.

Definition 1. Given any point p in a spacetime \mathcal{M} , the timelike (chronological) future and causal future of p, denoted $I^+(p)$ and $J^+(p)$, respectively are defined as $I^+(p) = \{q \in \mathcal{M} : p \ll q\}$ and $J^+(p) = \{q \in \mathcal{M} : p \leqslant q\}$. The timelike (chronological) past and causal past of p, denoted by $I^-(p)$ and $J^-(p)$, respectively are defined in a time-dual manner in terms of past directed timelike and causal curves. The chronological or causal future of any subset $S \subset \mathcal{M}$ is defined by

$$I^+(\mathcal{S}) = \bigcup_{p \in \mathcal{S}} I^+(p), \qquad J^+(\mathcal{S}) = \bigcup_{p \in \mathcal{S}} J^+(p),$$

respectively. $I^{-}(S)$ and $J^{-}(S)$ are defined in a time-dual manner.

It is known that for any $S \subset M$, $I^+(S)$ is always open. A number of results in this paper, require some of causality conditions such as follows.

A spacetime \mathcal{M} is said to be strongly causal at p, if p has an arbitrarily small neighborhood U such that no causal curve intersects U in a disconnected set. A spacetime \mathcal{M} is said to be strongly causal if strong causality holds at all p in \mathcal{M} . There is an interesting connection between strong causality and the so called Alexandrov topology. Since $I^+(p)$ is open, $I^+(p) \cap I^-(q)$ is open for any p and q in \mathcal{M} . The sets of the form $I^+(p) \cap I^-(q)$ define a basis for a topology on \mathcal{M} , which is called the Alexandrov topology of \mathcal{M} . This topology is in general more coarse than the manifold topology of \mathcal{M} . However It can be shown that the Alexandrov topology agrees with the given manifold topology if and only if the spacetime \mathcal{M} is strongly causal.

There is a fundamental causality condition for a spacetime which is called the globally hyperbolicity and it is very important for us in this paper. Mathematically, global hyperbolicity plays a role analogous to geodesic completeness in Riemannian geometry, that any pair of causally related points can be joined by a causal geodesic with maximal length.

Definition 2. A spacetime \mathcal{M} is said to be globally hyperbolic provided \mathcal{M} is strongly causal and the sets $J^+(p) \cap J^-(q)$ are compact for any p and q in \mathcal{M} .

A hypersurface H in \mathcal{M} is an embedded topological submanifold without boundary of codimension 1 in \mathcal{M} . We can regard H as a subset of \mathcal{M} and, then, H will be closed if it is a closed subset of \mathcal{M} . A spacelike hypersurface is an embadded smooth hypersurface such that its tangent space at each point is spacelike. A Cauchy surface in \mathcal{M} is a subset Σ that is met exactly once by every inextendible timelike curve in \mathcal{M} . Then, Σ will be a closed achronal connected topological hypersurface and it is intersected by any inextendible causal curve (see [8], Lemma 14.29). About Cauchy surfaces we state the following facts.

Proposition 2.2. Let Σ be a Cauchy surface in spacetime \mathcal{M} and let γ be an inextendible causal curve in \mathcal{M} such that $t_1 < t_2$ and $\gamma(t_1), \gamma(t_2) \in \Sigma$ for some real numbers t_1, t_2 . Then, for each $t_1 < t < t_2, \gamma(t) \in \Sigma$.

Proof. Suppose $\gamma(t) \in \Sigma$ fails for some $t_1 < t < t_2$. Then, $\gamma(t) \in I^+(\Sigma)$ or $\gamma(t) \in I^-(\Sigma)$. If $\gamma(t) \in I^+(\Sigma)$ then there exists $p \in \Sigma$ such that, $p \ll \gamma(t)$ and since $\gamma(t) \leq \gamma(t_2)$, by proposition 2.1 (i), we imply that $p \ll \gamma(t_2)$. This is a contradiction because Σ is achronal. If $\gamma(t) \in I^-(\Sigma)$ then there exists $q \in \Sigma$ such that, $\gamma(t) \ll q$ and since $\gamma(t_1) \leq \gamma(t_2)$, by proposition 2.1 (i), we imply

that $\gamma(t_1) \ll q$. This is a contradiction because Σ is achronal. These contradictions seem from the assumption that $\gamma(t) \in \Sigma$ fails for some $t_1 < t < t_2$. Hence, $\gamma(t) \in \Sigma$ for each $t_1 < t < t_2$.

In view of proposition 2.2, we note that the intersection of a Cauchy surface Σ with an inextendible causal curve in \mathcal{M} may be a closed geodesic segment instead a single point.

Proposition 2.3. Let Σ be a spacelike Cauchy surface in spacetime \mathcal{M} . Then, Σ is met exactly once by every inextendible causal curve in \mathcal{M} . In particular, Σ is a causal.

Proof. Let γ be an inextendible causal curve in \mathcal{M} . Then, by Lemma 14.29 in [8], γ intersect Σ . Now, suppose for some real numbers t_1 and t_2 , we have $t_1 < t_2$ and $\gamma(t_1), \gamma(t_2) \in \Sigma$. Then, by proposition 2.2, for each $t \in [t_1, t_2], \gamma(t) \in \Sigma$. Since Σ is achronal, $\gamma|_{[t_1, t_2]}$ is a null curve segment. This is a contradiction because Σ is spacelike Cauchy surface. Therefore, Σ is met exactly once by γ and the proof is complete.

It is known that a spacetime \mathcal{M} is globally hyperbolic if and only if there exists an spacelike Cauchy surface Σ on \mathcal{M} and then \mathcal{M} is diffeomorphic to $\mathbb{R} \times \Sigma$, where Σ is a spacelike Cauchy surface in \mathcal{M} [11]. Also, any two Cauchy surfaces in \mathcal{M} are homeomorphic (see [8], Corollary 14.32). Furthermore, any two spacelike Cauchy surfaces in globally hyperbolic spacetime \mathcal{M} are diffeomorphic (see [11], Lemma 2.2).

3. Causally admissible systems

Throughout this paper we assume that \mathcal{M} is a globally hyperbolic spacetime with a non-compact, smooth, spacelike Cauchy surface Σ . Let C^+ and C^- be respectively the sets of all future and past causally admissible subsets of \mathcal{M} with respect to Σ . That is

$$C^{+} = \{S_{p}^{+} = J^{-}(p) \cap \Sigma : p \in J^{+}(\Sigma)\}$$

and

$$C^{-} = \{S_{p}^{-} = J^{+}(p) \cap \Sigma : p \in J^{-}(\Sigma)\}$$

and they are called future and past admissible systems respectively. We note that S_p^+ and S_q^- are compact, connected subsets of Σ for each $p \in J^+(\Sigma)$ and each $q \in J^-(\Sigma)$. Let $C = (C^+, C^-)$. It is called causally admissible system on Σ .

Some important properties of the causally admissible subsets are the following (see [2]):

Theorem 3.1. Let Σ is non-compact Cauchy surface of \mathcal{M} ; (i) If $p, q \in J^+(\Sigma)$, then $p \leq q$ if and only if $S_p^+ \subseteq S_q^+$.

(ii) If $p, q \in J^{-}(\Sigma)$, then $p \leq q$ if and only if $S_{p}^{-} \supseteq S_{q}^{-}$. (iii) if $p \in J^{-}(\Sigma)$ and $q \in J^{+}(\Sigma)$, then $p \leq q$ if and only if $S_{p}^{-} \cap S_{q}^{+} \neq \phi$.

In the following proposition we review some known results about the causally admissible subsets.

Proposition 3.2. For a spacetime \mathcal{M} with a non-compact Cauchy surface Σ ; (i) If $p, q \in J^+(\Sigma)$, then $S_p^+ = S_q^+$ if and only if p = q. (ii) If $p, q \in J^-(\Sigma)$, then $S_p^- = S_q^-$ if and only if p = q.

Proof. See [4].

Some of the most important results in this paper, are about the causal or chronological isomorphisms between two spacetimes. Thus we are lead to introduce them as follows.

Definition 3. A bijective function $f : \mathcal{M} \to \mathcal{M}'$ between two spacetimes is called a causal isomorphism if $p \leq q \Leftrightarrow f(p) \leq f(q)$ and a chronological isomorphism if $p \ll q \Leftrightarrow f(p) \ll f(q)$. If there exists a causal isomorphism (chronological isomorphism, resp.) between \mathcal{M} and \mathcal{M}' then we say that \mathcal{M} and \mathcal{M}' are causally isomorphic (chronologically isomorphic, resp.).

In the following we will state some results about the causal isomorphisms which can be found in [13], [14] and [15].

Theorem 3.3. For a bijection $f : \mathcal{M} \to \mathcal{M}'$ between two chronological spacetimes, we have the following properties.

(i) f is a causal isomorphism if and only if f is a chronological isomorphism.

(ii) If f is a causal isomorphism, then f is a smooth conformal diffeomorphism.

Suppose that \mathcal{M} and \mathcal{M}' are globally hyperbolic spacetimes with noncompact Cauchy surfaces Σ and Σ' , respectively. Let C^+ and ${C'}^+$ be the corresponding future admissible systems for Σ and Σ' respectively, and we denote these by (Σ, C^+) and $(\Sigma', {C'}^+)$. Then, since the causal relation is encoded into C through the relation of inclusion, it is not difficult to see the following theorem.

Theorem 3.4. Two spacetimes \mathcal{M} and \mathcal{M}' with non-compact Cauchy surfaces are causally isomorphic if and only if there exists a causally admissible function $f: (\Sigma, C) \to (\Sigma', C')$ between the corresponding causally admissible systems.

Proof. See [4], Theorem 5.4.

Since \mathbb{R}_1^2 is globally hyperbolic with the non-compact Cauchy surface, we can apply the theory of a causally admissible system to analyze causal automorphisms on \mathbb{R}_1^2 . This is the main tool for our goal in this paper.

In the next section, we use the following theorem to assert our main results.

Theorem 3.5. Let $\gamma : \mathbb{R} \to \mathbb{R}_1^2$ given by $t \to (f(t), g(t))$ be an injective, continuous curve in \mathbb{R}_1^2 . Then, $\gamma(\mathbb{R})$ is an acausal Cauchy surface if and only if f is a homeomorphism, $\sup(g \pm f) = \infty$, $\inf(g \pm f) = -\infty$ and $\left|\frac{g(t+\delta t)-g(t)}{f(t+\delta t)-f(t)}\right| < 1$ for all t and $\delta t \neq 0$.

Proof. See [3], Theorem 4.3.

Example 3.6. Let $\gamma : \mathbb{R} \to \mathbb{R}^2_1$ given by $t \to (f(t), g(t))$ where f(t) = t and $g(t) = \alpha \cos t$ for all $t \in \mathbb{R}$ and $0 < \alpha < 1$. Then, the curve γ is an injective and continuous curve in \mathbb{R}^2_1 and the component functions $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ of the curve γ have the following properties. The component function f is a homeomorphism, $\sup(g \pm f) = \infty$ and $\inf(g \pm f) = -\infty$. By using the mean value theorem of calculus we have

$$\left|\frac{g(t+\delta t) - g(t)}{f(t+\delta t) - f(t)}\right| < 1$$

for all t and $\delta t \neq 0$. In view of Theorem 3.5, $\gamma(\mathbb{R})$ (the graph of the cosine function) is an acausal Cauchy surface of \mathbb{R}^2_1 .

4. Main Results

In this section we assume that Σ is a non-compact spacelike Cauchy surface of two-dimensional Minkowski spacetime \mathbb{R}_1^2 . Also, we assume that \mathcal{A} is the set of all compact and connected subsets of Σ . We use y as the time coordinate of \mathbb{R}_1^2 and we suppose that the future direction on \mathbb{R}_1^2 is the positive direction on y axis. For all $r \in \mathbb{R}_1^2$ and $m \in \mathbb{R}$ we set $\ell_{r,m}$ as the line that passes through the point r and has slope m.

Proposition 4.1. Let Σ be a non-compact spacelike Cauchy surface of twodimensional Minkowski spacetime \mathbb{R}^2_1 . Then, there exists a continuous function $f: \mathbb{R} \to \mathbb{R}$ such that $\Sigma = \{(t, f(t)) : t \in \mathbb{R}\}.$

Proof. Let $\pi_2 : \mathbb{R}^2_1 \to \mathbb{R}$ be the projection map defined by $\pi_2(x, y) = y$ and let for each $t \in \mathbb{R}$, $\gamma_t : \mathbb{R} \to \mathbb{R}^2_1$ be the timelike curve in \mathbb{R}^2_1 defined by $\gamma_t(y) = (t, y)$. We can define the function $f : \mathbb{R} \to \mathbb{R}$ by $f(t) = \pi_2(\gamma_t(\mathbb{R}) \cap \Sigma)$ the function f is well-defined, because Σ is Cauchy surface and $\gamma_t(\mathbb{R})$ is the graph of the timelike curve γ_t and γ_t intersects Σ exactly once. In the following, we will prove that fis continuous and $\Sigma = \{(t, f(t)) : t \in \mathbb{R}\}$. Let $\mathbb{R}_{y_0} = \{(x, y) \in \mathbb{R}^2_1 : y = y_0\}$ (we know that \mathbb{R}_{y_0} is a Cauchy surface of \mathbb{R}^2_1). By Corollary 14.32 in [8], there exists a homeomorphism $F : \mathbb{R}_{y_0} \to \Sigma$ given by $(x, y_0) \to (g(x, y_0), h(x, y_0))$. We know that the map $\iota : \mathbb{R} \to \mathbb{R}_{y_0}$ defined by $\iota(x) = (x, y_0)$ is a homeomorphism and it implies that the map $Fo\iota : \mathbb{R} \to \Sigma$ defined by $Fo\iota(x) = (go\iota(x), ho\iota(x))$ is a homeomorphism and $Fo\iota(\mathbb{R}) = \Sigma$. Then, by theorem 3.5, the function $go\iota : \mathbb{R} \to \mathbb{R}$ is a homeomorphism and the map $(Fo\iota)o(go\iota)^{-1} : \mathbb{R} \to \Sigma$ is a homeomorphism such that $(Fo\iota)o(go\iota)^{-1}(t) = (t, (ho\iota)o(go\iota)^{-1}(t))$. Therefore, the function $(ho\iota)o(go\iota)^{-1} : \mathbb{R} \to \mathbb{R}$ is continuous. We note that for all $t \in \mathbb{R}$ the points $(t, (ho\iota)o(go\iota)^{-1}(t))$ and (t, f(t)) are on the Cauchy surface Σ and they are also on the timelike curve γ_t . Since Σ is a Cauchy surface, we must have $f(t) = (ho\iota)o(go\iota)^{-1}(t)$ and it means that $f = (ho\iota)o(go\iota)^{-1}$. This prove that the function f is continuous and

$$\Sigma = (Fo\iota)o(go\iota)^{-1}(\mathbb{R}) = \{(t, (ho\iota)o(go\iota)^{-1}(t)) : t \in \mathbb{R}\} = \{(t, f(t)) : t \in \mathbb{R}\}.$$

Recall that on a spacetime $\mathcal M$ the causal relation " \leqslant " has been defined as follows:

For all $p, q \in \mathcal{M}, p \leq q$ if and only if there exists a future directed causal curve from p to q or p = q. In the two-dimensional Minkowski spacetime \mathbb{R}^2_1 , we can state the causal relation " \leq " as the following proposition.

Proposition 4.2. Let $(a, b), (x, y) \in \mathbb{R}^2_1$. Then, $(x, y) \in J^+(a, b)$ if and only if (x, y) satisfies in one of the following conditions (i) (x, y) = (a, b),(ii) b < y and $|x - a| \leq y - b.$

Proof. If (x, y) = (a, b), then $(x, y) \in J^+(a, b)$ (by definition of $J^+(a, b)$). Let us assume that $(x, y) \neq (a, b)$. By the future direction on \mathbb{R}^2_1 we know that if b > y then $(x, y) \notin J^+(a, b)$. Let $x \neq a$ and b < y. Define $f : \mathbb{R} - \{a\} \to \mathbb{R}$ by $f(t) = \frac{b-y}{a-t}$, where f(t) equals to the slope of the line segment from (a, b) to (t, y). We know that f is strictly decreasing on its domain. Since \mathbb{R}^2_1 is globally hyperbolic, $(t, y) \in J^+(a, b)$ if and only if the line segment from (a, b) to (t, y)is a causal curve and by definition of f this is equivalent to say that $|f(t)| \ge 1$. Since f is strictly decreasing, f(a + b - y) = -1, and f(a - b + y) = 1 then

$$-\infty = \lim_{t \to a^-} f(t) < f(t) \leqslant -1 \Leftrightarrow a - (y - b) \leqslant t < a \Leftrightarrow -(y - b) \leqslant t - a < 0$$

and

$$1 \leq f(t) < \infty = \lim_{t \to a^+} f(t) \Leftrightarrow a < t \leq a + (y - b) \Leftrightarrow 0 < t - a < y - b \text{ (see Figure 1).}$$

Therefore, if $x \neq a$ and b < y we have $(x, y) \in J^+(a, b)$ if and only if $0 < |x - a| \leq y - b$ If x = a and b < y, then $\gamma : (b, y) \to \mathbb{R}^2_1$ given by $\gamma(t) = (a, t)$ is a future directed timelike curve from (a, b) to (x, y), then $(x, y) \in J^+(a, b)$. Hence, we prove that if b < y, then $(x, y) \in J^+(a, b)$ if and only if $|x - a| \leq y - b$. This complete the proof.

Proposition 4.2 has a time dual as the following proposition and we can prove it by a similar approach as in proposition 4.2 (see Figure 2).

FIGURE 1. $(x,y) \in J^+(a,b) \Leftrightarrow (x,y) = (a,b)$ or b > y and $|x-a| \leqslant y-b$

Proposition 4.3. Let $(a, b), (x, y) \in \mathbb{R}_1^2$. Then, $(x, y) \in J^-(a, b)$ if and only if (x, y) satisfies in one of the following conditions; (i) (x, y) = (a, b). (ii) b > y and $|x - a| \leq b - y$.

Remark 4.4. Applying proposition 4.1, we can find the continuous function $f : \mathbb{R} \to \mathbb{R}$ such that the map $F : \mathbb{R} \to \Sigma$ defined by F(t) = (t, f(t)) is a homeomorphism. Therefore,

$$\Sigma = F(\mathbb{R}) = \{ (t, f(t)) : t \in \mathbb{R} \}.$$

Let $A \in \mathcal{A}$ (recall that \mathcal{A} is the set of all compact and connected subsets of Σ). Since F is a homeomorphism, $F^{-1}(A)$ is a compact and connected subsets of \mathbb{R} and there exist $a, b \in \mathbb{R}$ such that $F^{-1}(A) = [a, b]$. Therefore, $A = \{(t, f(t)) : a \leq t \leq b\}$.

Now, set p = (b, f(b)) and q = (a, f(a)). Let us consider the lines $\ell_{p,1}$, $\ell_{p,-1}$ and $\ell_{q,1}$, $\ell_{q,-1}$ as follows,

$$\ell_{p,1} : y = x - b + f(b),$$

$$\ell_{p,-1} : y = -x + b + f(b),$$

$$\ell_{q,1} : y = x - a + f(a),$$

$$\ell_{q,-1} : y = -x + a + f(a).$$

We know that $\ell_{p,1}$ is perpendicular to $\ell_{q,-1}$ and $\ell_{p,-1}$ is perpendicular to $\ell_{q,1}$ are perpendicular. We can find the points of their intersections by solving the following systems of linear equations.

FIGURE 2. $(x,y)\in J^-(a,b)\Leftrightarrow (x,y)=(a,b)$ or b>y and $|x-a|\leqslant b-y$

$$\begin{cases} y = x - b + f(b) \\ y = -x + a + f(a) \end{cases}$$

$$\begin{cases} y = -x + b + f(b) \\ y = x - a + f(a) \end{cases}$$
(4.1)
(4.2)

We set R and L as the solution of the system of linear equations (4.1) and (4.2), respectively (see Figure 3). It is easy to see that

$$R = \left(\frac{a+b}{2} - \frac{f(b) - f(a)}{2}, -\frac{b-a}{2} + \frac{f(a) + f(b)}{2}\right)$$
$$L = \left(\frac{a+b}{2} + \frac{f(b) - f(a)}{2}, \frac{b-a}{2} + \frac{f(a) + f(b)}{2}\right).$$

There are some interesting properties between the points L, R, p and q, where we state them as follows.

Proposition 4.5. $L \in J^+(p) \cap J^+(q)$ and $R \in J^-(p) \cap J^-(q)$.

Proof. We know that the points p = (b, f(b)) and q = (a, f(a)) are on the spacelike Cauchy surface Σ (see Figure 3).

Step 1: In this step we want to show that $L \in J^+(p)$. Using Theorem 3.5, we

and

$$\frac{f(b)-f(a)}{b-a}<1 \Rightarrow \frac{f(a)-f(b)}{b-a}>-1 \Rightarrow 1+\frac{f(a)-f(b)}{b-a}>0$$

FIGURE 3. Spacelike Cauchy surface Σ

and this yields that

$$b - a + f(a) - f(b) > 0 \Rightarrow b - a + f(b) + f(a) > 2f(b).$$

Thus,
$$\frac{b - a}{2} + \frac{f(b) + f(a)}{2} > f(b).$$
 (4.3)

Since the line $\ell_{p,-1}$ passes through the point L, we deduce that the coordinate of the point L satisfies in the equation of the line $\ell_{p,-1}$ and we have

$$f(b) - \left(\frac{a+b}{2} + \frac{f(b) - f(a)}{2}\right) = \left(\frac{b-a}{2} + \frac{f(b) + f(a)}{2}\right) - b.$$

Then,
$$\left| \left(\frac{a+b}{2} + \frac{f(b) - f(a)}{2}\right) - f(b) \right| = \left(\frac{b-a}{2} + \frac{f(b) + f(a)}{2}\right) - b.$$

 $\left| \left(-2 \right) \right|$ This yields that,

$$\left| \left(\frac{a+b}{2} + \frac{f(b) - f(a)}{2} \right) - f(b) \right| \leq \left(\frac{b-a}{2} + \frac{f(b) + f(a)}{2} \right) - b.$$
(4.4)

In view of Proposition 4.2 and inequalities 4.3 and 4.4, we see that $L \in J^+(p).$

Step 2: In this step we will prove that $L \in J^+(q)$. Using Theorem 3.5, we have

$$\frac{f(b) - f(a)}{b - a} > -1 \Rightarrow 1 + \frac{f(b) - f(a)}{b - a} > 0$$

and this yields that

$$b - a + f(b) - f(a) > 0 \Rightarrow b - a + f(b) + f(a) > 2f(a)$$

Thus,

$$\frac{b-a}{2} + \frac{f(b) + f(a)}{2} > f(a).$$
(4.5)

Since the line $\ell_{q,1}$ passes through the point L, we deduce that the coordinate of the point L satisfies in the equation of the line $\ell_{q,1}$ and we have

$$\left(\frac{a+b}{2} + \frac{f(b) - f(a)}{2}\right) - a = \left(\frac{b-a}{2} + \frac{f(b) + f(a)}{2}\right) - f(a).$$

Then,

$$\left| \left(\frac{a+b}{2} + \frac{f(b) - f(a)}{2} \right) - a \right| = \left(\frac{b-a}{2} + \frac{f(b) + f(a)}{2} \right) - f(a).$$

This yields that,

$$\left| \left(\frac{a+b}{2} + \frac{f(b) - f(a)}{2} \right) - a \right| \leqslant \left(\frac{b-a}{2} + \frac{f(b) + f(a)}{2} \right) - f(a).$$
(4.6)

In view of Proposition 4.2 and inequalities (4.5) and (4.6), we see that $L \in J^+(q)$. Therefore, by claims of Step 1 and Step 2 we can conclude that $L \in J^+(p) \cap J^+(q)$.

Step 3: In this step we will show that $R \in J^{-}(p)$. Using Theorem 3.5, we have

$$\frac{f(b) - f(a)}{b - a} > -1 \Rightarrow f(b) - f(a) > -(b - a)$$

and this yields that

$$a - b + f(a) - f(b) < 0 \Rightarrow a - b + f(a) + f(b) < 2f(b)$$

Thus,

$$\left(-\frac{b-a}{2} + \frac{f(b) + f(a)}{2} < f(b)\right). \tag{4.7}$$

Since the line $\ell_{p,1}$ passes through the point R, we deduce that the coordinate of the point R satisfies in the equation of the line $\ell_{p,1}$ and we have

$$b - \left(\frac{a+b}{2} - \frac{f(b) - f(a)}{2}\right) = f(b) - \left(-\frac{b-a}{2} + \frac{f(a) + f(b)}{2}\right).$$

Then,

$$\left| b - \left(\frac{a+b}{2} - \frac{f(b) - f(a)}{2}\right) \right| = f(b) - \left(-\frac{b-a}{2} + \frac{f(a) + f(b)}{2} \right).$$

This yields that,

$$\left| \left(\frac{a+b}{2} - \frac{f(b) - f(a)}{2} \right) - b \right| \leq f(b) - \left(-\frac{b-a}{2} + \frac{f(a) + f(b)}{2} \right).$$
(4.8)

In view of Proposition 4.3 and inequalities (4.7) and (4.8), we see that $R \in J^{-}(p)$.

Step 4: In this step we want to prove that $R \in J^{-}(q)$. Using Theorem 3.5, we have

$$\frac{f(b)-f(a)}{b-a} < 1 \Rightarrow -1 + \frac{f(b)-f(a)}{b-a} < 0$$

and this yields that

$$a - b + f(b) - f(a) < 0 \Rightarrow a - b + f(a) + f(b) < 2f(a).$$

Thus,

$$\left(-\frac{b-a}{2} + \frac{f(a) + f(b)}{2}\right) < f(a) \tag{4.9}$$

Since the line $\ell_{q,-1}$ passes through the point R, we deduce that the coordinate of the point R satisfies in the equation of the line $\ell_{q,-1}$ and we have

$$\left(\frac{a+b}{2} - \frac{f(b) - f(a)}{2}\right) - a = f(a) - \left(-\frac{b-a}{2} + \frac{f(a) + f(b)}{2}\right).$$

Then,

$$\left| \left(\frac{a+b}{2} - \frac{f(b) - f(a)}{2} \right) - a \right| = f(a) - \left(-\frac{b-a}{2} + \frac{f(a) + f(b)}{2} \right).$$

This yields that,

$$\left| \left(\frac{a+b}{2} - \frac{f(b) - f(a)}{2} \right) - a \right| \leq f(a) - \left(-\frac{b-a}{2} + \frac{f(a) + f(b)}{2} \right).$$
(4.10)

In view of Proposition 4.3 and inequalities (4.9) and (4.10), we see that $R \in J^{-}(q)$. By using the results of Step 3 and Step 4, we have $R \in J^{-}(p) \cap J^{-}(q)$.

These complete the proof.

Corollary 4.6. $L \in I^+(\Sigma)$ and $R \in I^-(\Sigma)$.

Proof. Applying Proposition 4.5, we see that $L \in J^+(p)$. Since $p \in \Sigma$, we deduce that $L \in J^+(\Sigma) = \Sigma \cup I^+(\Sigma)$. The inextendible future directed causal curve $\gamma : \mathbb{R} \to \mathbb{R}^2_1$ defined by $\gamma(t) = (t, -t+b+f(b))$, passes through the points p and L. In view of Proposition 2.3, we infer that L is not a member of Σ and we conclude $L \in I^+(\Sigma)$.

Employing a similar approach as above, we see that $R \in I^{-}(\Sigma)$.

Corollary 4.7. $L \in I^+(R)$.

Proof. We know that

$$R = \left(\frac{a+b}{2} - \frac{f(b) - f(a)}{2}, -\frac{b-a}{2} + \frac{f(a) + f(b)}{2}\right),$$

and

$$L = \left(\frac{a+b}{2} + \frac{f(b) - f(a)}{2}, \frac{b-a}{2} + \frac{f(a) + f(b)}{2}\right).$$

The slope of the line passes through the points R and L is

$$m = \frac{\left(\frac{b-a}{2} + \frac{f(a) + f(b)}{2}\right) - \left(-\frac{b-a}{2} + \frac{f(a) + f(b)}{2}\right)}{\left(\frac{a+b}{2} + \frac{f(b) - f(a)}{2}\right) - \left(\frac{a+b}{2} - \frac{f(b) - f(a)}{2}\right)} = \frac{b-a}{f(b) - f(a)}$$

Moreover, we know that the points p = (b, f(b)) and q = (a, f(a)) are on the spacelike Cauchy surface Σ . Using Theorem 3.5, we see that

$$\Big|\frac{f(b)-f(a)}{b-a}\Big|<1 \Rightarrow \Big|\frac{b-a}{f(b)-f(a)}\Big|>1,$$

This means that the line segment passes through the points R and L in the globally hyperbolic spacetime \mathbb{R}^2_1 is timelike, and then we conclude that $L \in I^+(R)$.

Proposition 4.8. Let f, a, L and R be those notions which have been stated in Remark 4.4. If t < a then $(t, f(t)) \notin J^{-}(L)$ and $(t, f(t)) \notin J^{+}(R)$.

Proof. At first we show that $(t, f(t)) \notin J^{-}(L)$. If (t, f(t)) = L, then the future directed causal curve $\gamma : \mathbb{R} \to \mathbb{R}^2_1$ defined by $\gamma(s) = -s + a + f(a)$ intersects spacelike Cauchy surface Σ in two distinct points q = (a, f(a)) and (t, f(t)). In view of Proposition 2.3, it is a contradiction. It yields that $(t, f(t)) \neq L$. We know that one and only one of the following statements is true,

(i)
$$f(t) = \frac{b-a}{2} + \frac{f(b)+f(a)}{2}$$
,
 $b-a = \frac{f(b)+f(a)}{2}$,

(ii)
$$f(t) > \frac{b-a}{2} + \frac{f(b) + f(a)}{2}$$

(iii)
$$f(t) < \frac{b-a}{2} + \frac{f(b) + f(a)}{2}$$
.

Let (i) be true. Since $(t, f(t)) \neq L$, we must have $t \neq \frac{a+b}{2} + \frac{f(b)+f(a)}{2}$. Using Proposition 4.3, one can observe $(t, f(t)) \notin J^{-}(L)$. Let (ii) be true. In view of Proposition 4.3, we see $(t, f(t)) \notin J^{-}(L)$. Ultimately, let (iii) be true. Applying Theorem 3.5, we have

$$\frac{f(b) - f(t)}{b - t} > -1 \Rightarrow \frac{f(b) - f(t)}{t - b} < 1 \Rightarrow t - b > f(b) - f(t).$$

It yields that

$$t - \frac{a}{2} - \frac{b}{2} - \frac{f(b)}{2} + \frac{f(a)}{2} > \frac{b}{2} - \frac{a}{2} + \frac{f(b)}{2} + \frac{f(a)}{2} - f(t)$$

Then,

$$t - \left(\frac{a+b}{2} + \frac{f(b) - f(a)}{2}\right) > \left(\frac{b-a}{2} + \frac{f(b) + f(a)}{2}\right) - f(t)$$

By Proposition 4.3, we have $(t, f(t)) \notin J^-(L)$ and the proof in this case is complete. Now it is enough to show that $(t, f(t)) \notin J^+(R)$. If (t, f(t)) = Rthen the future directed causal curve $\alpha : \mathbb{R} \to \mathbb{R}^2_1$ defined by $\alpha(s) = s - a + f(a)$ intersects spacelike Cauchy surface Σ in two distinct points q = (a, f(a))and (t, f(t)). In view of Proposition 2.3, it is a contradiction. It yields that $(t, f(t)) \neq R$.

We know that one and only one of the following statements is true,

(iv)
$$f(t) = -\frac{b-a}{2} + \frac{f(b) + f(a)}{2}$$
,

(v)
$$f(t) > -\frac{b-a}{2} + \frac{f(b)+f(a)}{2}$$
,

(vi)
$$f(t) < -\frac{b-a}{2} + \frac{f(b) + f(a)}{2}$$
.

Let (iv) be true. Since $(t, f(t)) \neq R$, we must have $t \neq \frac{a+b}{2} - \frac{f(b) - f(a)}{2}$. Using Proposition 4.2, one can observe $(t, f(t)) \notin J^+(R)$. Let (v) be true. In view of Proposition 4.2, we see $(t, f(t)) \notin J^+(R)$. Ultimately, let (vi) be true. Applying Theorem 3.5, we have

$$\frac{f(a) - f(t)}{a - t} > -1 \Rightarrow \frac{f(a) - f(t)}{t - a} < 1 \Rightarrow t - a < f(a) - f(t).$$

It yields that

Causal automorphisms of two-dimensional Minkowski spacetime

$$t - \frac{a}{2} - \frac{b}{2} + \frac{f(b)}{2} - \frac{f(a)}{2} < -f(t) - \frac{b}{2} + \frac{a}{2} + \frac{f(a)}{2} + \frac{f(b)}{2}$$

Then,

$$t - \left(\frac{a+b}{2} - \frac{f(b) - f(a)}{2}\right) < -\left(f(t) - \left(-\frac{b-a}{2} + \frac{f(b) + f(a)}{2}\right)\right).$$

By proposition 4.2, we have $(t, f(t)) \notin J^{-}(L)$ and this complete the proof. \Box

Applying a similar approach as the proof of proposition 4.8, we can prove the following proposition.

Proposition 4.9. Let f, b, L and R be those notions which have been stated in Remark 4.4. If b < t then $(t, f(t)) \notin J^{-}(L)$ and $(t, f(t)) \notin J^{+}(R)$.

Proposition 4.10. Let f, a, b, L and R be those notions which have been stated in Remark 4.4. If $a \leq t \leq b$ then $(t, f(t)) \in J^{-}(L)$ and $(t, f(t)) \in J^{+}(R)$.

Proof. For showing $(t, f(t)) \in J^{-}(L)$ by Proposition 4.3 we will prove the following inequalities

$$f(t) < \frac{b-a}{2} + \frac{f(b) + f(a)}{2},$$
$$t - \left(\frac{a+b}{2} + \frac{f(b) - f(a)}{2}\right) \Big| < \left(\frac{b-a}{2} + \frac{f(b) + f(a)}{2}\right) - f(t).$$

Applying Theorem 3.5, we have

$$\frac{f(b) - f(t)}{b - t} > -1 \Rightarrow \frac{f(t) - f(b)}{b - t} < 1.$$

s that
$$\frac{f(t) - f(b)}{(b - t)(t - a)} < \frac{1}{t - a} = \frac{b - t}{(b - t)(t - a)}.$$
 (4.11)

It yields

On the other hand in view of Theorem 3.5, we have

efore,

$$\frac{f(t) - f(a)}{t - a} < 1$$

$$\frac{f(t) - f(a)}{(t - a)(b - t)} < \frac{1}{b - t} = \frac{t - a}{(b - t)(t - a)}.$$
(4.12)

Ther

Using (4.11) and (4.12), we obtain that

M. Bahrami Seif Abad and M. Sharifzadeh

$$\frac{f(t) - f(b)}{(b - t)(t - a)} + \frac{f(t) - f(a)}{(t - a)(b - t)} < \frac{b - t}{(b - t)(t - a)} + \frac{t - a}{(b - t)(t - a)}.$$

It yields that

$$f(t) - f(b) + f(t) - f(a) < b - t + t + a \Rightarrow 2f(t) < b - a + f(b) + f(a).$$

Then, we conclude

$$f(t) < \frac{b-a}{2} + \frac{f(b) + f(a)}{2}.$$

We apply Theorem 3.5 again and we see that

$$\frac{f(b) - f(t)}{b - t} > -1 \Rightarrow \frac{f(b) - f(t)}{t - b} < 1 \Rightarrow t - b < f(b) - f(t).$$

It implies that

$$2t - 2b < 2f(b) - 2f(t) \Rightarrow 2t - a - b - f(b) + f(a) < b - a + f(b) + f(a) - 2f(t).$$

Then, we observe that

$$t\left(-\left(\frac{a+b}{2} + \frac{f(b) - f(a)}{2}\right) < \left(\frac{b-a}{2} + \frac{f(b) + f(a)}{2}\right) - f(t)\right).$$
(4.13)

Using Theorem 3.5 one more time, we have

$$\frac{f(t) - f(a)}{t - a} < 1 \Rightarrow f(t) - f(a) < t - a.$$

Thus, we infer that

$$2f(t) - 2f(a) < 2t - 2a \Rightarrow 2f(t) - b + a - f(b) - f(a) < 2t - a - b - f(b) + f(a).$$

Therefore,

 28

Causal automorphisms of two-dimensional Minkowski spacetime

$$\left(-\left(\left(\frac{b-a}{2} + \frac{f(b) + f(a)}{2}\right) - f(t)\right) < t\left(-\left(\frac{a+b}{2} + \frac{f(b) - f(a)}{2}\right)\right). \quad (4.14)$$

Using (4.13) and (4.14), one can observe that

$$\left|t - \left(\frac{a+b}{2} + \frac{f(b) - f(a)}{2}\right)\right| < \left(\frac{b-a}{2} + \frac{f(b) + f(a)}{2}\right) - f(t).$$

Hence, we prove that $(t, f(t)) \in J^{-}(L)$.

In view of Proposition 4.2 and a similar approach as above, one can prove $(t, f(t)) \in J^+(R)$.

Theorem 4.11. Let A, L and R be those notions which have been stated in Remark 4.4. Then $S_L^+ = A$ and $S_R^- = A$.

Proof. Let $r \in S_L^+ = J^-(L) \cap \Sigma$. Applying Proposition 4.1, there exists $t \in \mathbb{R}$ such that r = (t, f(t)). Since $r = (t, f(t)) \in J^-(L)$, we must have $a \leq t \leq b$ because if t < a or t > b then in view of proposition 4.8 and Proposition 4.9, we have $(t, f(t)) \notin J^-(L)$. Then, we see that $r = (t, f(t)) \in A$. It means that $S_L^+ \subset A$.

Now, let $(t, f(t)) \in A$. Using Proposition 4.10, we obtain $(t, f(t)) \in J^-(L)$. Since $A \subset \Sigma$, we have $(t, f(t)) \in J^-(L) \cap \Sigma = S_L^+$. Then, we infer that $A \subset S_L^+$. Therefore, $S_L^+ = A$.

Applying a similar approach as above, we see that $S_R^- = A$.

We know that every future or past causally admissible subset of Σ is compact and connected. By the above theorem we can show that every compact and connected subset A of Σ is a future or past causally admissible subset. Therefore, we have the following corollary.

Corollary 4.12. Let Σ be anon-compact spacelike Cuachy surface on \mathbb{R}^2_1 and let C^+ , C^- and C be respectively the future admissible, past admissible and admissible system on Σ . Then $C^+ = C^- = C$.

Theorem 4.13. Let C be causally admissible system on Σ and let A be the set of all compact and connected subsets of Σ . Then, C = A.

Proof. For each $p \in J^+(\Sigma)$ and $q \in J^-(\Sigma)$, we know that the sets S_p^+ and S_q^- are compact and connected subsets of Σ . Therefore, $C \subset \mathcal{A}$.

Let A be a compact and connected subset of Σ . In view of Proposition 4.11, there are the points L and R such that $S_L^+ = A$ and $S_R^- = A$. It means that A is a future causal set and a past causal set of two-dimensional Minkowski spacetime \mathbb{R}^2_1 , respectively. Therefore, we have $A \in C$. It yields that $\mathcal{A} \subset C$. Hence, we prove that $C = \mathcal{A}$.

Theorem 4.14. Let Σ and Σ' be two non-compact spacelike Cauchy surfaces of two-dimensional Minkowski spacetime \mathbb{R}^2_1 and let $f: \Sigma \to \Sigma'$ be a bijaction. Then the following statements are equivalent,

(i) f is a future causally admissible function,
(ii) f is a past causally admissible function,

(iii) f is a causally admissible function,

(iv) f is a homeomorphism.

Proof. By 4.12 we can see that (i), (ii) and (iii) are equivalent. The proof of $(\text{iii}) \Rightarrow (\text{iv})$ has been obtained by Theorem 3.4, which is say that every causally admissible function $f : \Sigma \to \Sigma'$ can be extend to a causally isomorphism between their manifolds such as $\tilde{f} : \mathbb{R}_1^2 \to \mathbb{R}_1^2$. Therefore, $f = \tilde{f}|_{\Sigma} : \Sigma \to \Sigma'$ is a homeomorphism. Now suppose that $f : \Sigma \to \Sigma'$ is a homeomorphism then, for every $S \in C$, f(S) is a compact connected subset of Σ' . So by Theorem 4.13 we have $f(A) \in C'$ and it is show that (iv) \Rightarrow (iii).

Remark 4.15. By Theorem 4.14 and Theorem 3.4, every homeomorphism between two non-compact Cuachy surfaces Σ , Σ' of \mathbb{R}^2_1 , determines a causal isomorphism of \mathbb{R}^2_1 to itself.

References

- 1. E. C. Zeeman, Causality implies the Lorentz group, J. Math. Phys. 5(1964), 490.
- D. H. Kim, An Imbedding of Lorentzian manifolds, Class. Quantum Gravity. 26(2009), 075004.
- D. H. Kim, Causal automorphisms of two-dimensional Minkowski spacetime, Class. Quantum Gravity. 27(2010), 075006.
- D. H. Kim, A note on non-compact Cauchy surfaces, Class. Quantum Gravity. 25(2008), 238002.
- V. V. Filippov, Basic topological structures of ordinary differential equations, Kluwer Academic Publisher, Netherlands, 1998.
- B. S. Choundhury and H. S. Mondal, Continuous representation of a globally hyperbolic spacetime with non-compact Cauchy surfaces, Anal. Math. Phys. 5(2015), 183-191.
- J. K. Beem, P. E. Ehrlich and K. L. Easley, Continuous representation of a globally hyperbolic spacetime with non-compact Cauchy surfaces, Anal. Math. Phys. 5(2015), 183-191.
- B. O'Neil, Semi-Riemannian geometry with applications to relativity, Academic Press, 1983.
- A. N. Bernal and M. Sanchez, Globally hyperbolic spacetimes can be defined as causal instead of strongly causal, Class. Quantum Gravity. 24(745) (2007).
- 10. R. Geroch, Domain of dependence, J. Math. Phys. 11(437) (1970).
- A. N. Bernal and M. Sanchez, On smooth Cauchy hypersurfaces and Geroch's splitting theorem, Commun. Math. Phys. 243(2003), 461-470.
- A. N. Bernal and M. Sanchez, Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes, Commun. Math. Phys. 257(43) (2005).
- D. Malement, The class of continuous timelike curves determines the topology of spacetime, J. Math. Phys. 18(7) (1977), 1399-1404.

- E. Minguzzi and M. Sanchez, *The causal hierarchy of spacetimes*, Recent developments in pseudo-Riemannian geometry, 299-358, ESI Lect. Math. Phys., Eur. Math. Soc., Zurich, (2008).
- S. W. Hawking, A. R. King and P. J. McCarthy, A new topology for curved spacetime which incorporates the causal, differential and conformal structure, J. Math. Phys. 17(174) (1976).
- 16. R. Penrose, *Techniques of differential topology in relativity*, the Society for Industrial and Applied Mathematics (1972).

Received: 01.03.2025 Accepted: 20.04.2025