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ABSTRACT 

Smartphones have wide range of sensors such as gyroscopes or inertial sensors, which can be used for recognizing 

and tracking exercises. A framework, called TrainingPal, was proposed to automatically identify five types of 

cardio exercises and five types of resistance exercises. Included exercises were running, walking, rowing, using 

elliptical machine, and jumping jack. Sit-up, bench dip, push-up, squat, and lunge were included as popular 

resistance exercises. In addition to recognition of each exercises, the proposed framework was able to count number 

of repetitions of each exercise. To train and test the proposed framework, data was collected from Samsung Galaxy 

S7 edge, which was attached to the outer side of arm approximately 10 to 12 cm below the shoulder. To avoid 

overfitting, we used leave-one-subject-out cross validation. An overall accuracy of 91.71% was achieved in 

identifying different types of exercises. The accuracy ranged from 100% for push-ups to 60.33% for bench dips. 

The accuracy of the proposed framework in counting the exercises was 90%. The results suggested that the 

proposed framework can be used for identifying and tracking of the included exercises. The framework can be 

extended to other wearable devices.  
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Introduction 
In past decade, smartphones have surfaced as a tool with huge potentials for monitoring physical 

exercises and categorizing individual into different categories based on their physical activities. This will 

help us to tackle several health challenges arisen from physical inactivity. Being physically inactive is 

associated with an elevated risk of different chronic diseases such as type 2 diabetes and cardiovascular 

diseases (1-3). These chronic diseases are considered as the leading cause of death worldwide (4). Also, 

these chronic diseases cause major limitations in adults’ daily lives (5,6) and are associated with huge 

costs for the healthcare systems and governments in both developing and developed countries (7).  

In Iran, the leading death cause is cardiovascular diseases, which account for more than half of all annual 

deaths (6). With aging of population in prospective, the percentage of deaths because of cardiovascular 

diseases is expected to steadily rise over the next few years (6). Considering the role that using the 

wearable sensors can play in preventing cardiovascular, in recent years several studies has conducted to 

use the wearable sensors for monitoring the physical activities of their users (8, 9).  

Moreover, by monitoring exercises, we can examine if a specific set of exercises are effective and we can 

continuously get feedbacks from users to improve their athletic performances. Monitoring the individual 

performances is more difficult in the high-intensity interval training, where a person does a series of 

exercises in a loop. Previous studies emphasized on the importance of performance tracking in the high-

intensity interval training for achieving the desirable outcomes (10-12). 

Recent advancements in sensor manufacturing led to possibility of mass production of small low power 

inertial sensors (13). These sensors showed huge potential for monitoring daily exercises and activities 

(14, 15) and monitoring patients with motor control problems such as patients with Parkinson's disease 

(16,17). 

Modern smartphones have built-in 3D-accelerometer, magnetometer and gyroscope. Gyroscope and 3D-

accelerometer data stream is essential for recording the angular velocity of the smartphone while 

magnetometers are used to estimate the orientation of the smartphone by recording direction and strength 

of the magnetic field (18). Different applications ranging from the automotive navigation (19) to mobile 

games (20) use these built-in sensors. 

The smartphone sensors have been previously utilized to monitor physical activities. As an example, 

Guiry et al. (21) suggested a framework for recognition of cycling, walking, sitting, standing, running, 

stair/elevator descents/ ascents. The framework utilized data stream of sensors including gyroscope, 

magnetometer, accelerometer, light, GPS, and pressure. Shoaib et al. (22) relied on the data coming from 

gyroscope and accelerometer and built an algorithm to classify activities into walking, smoking, drinking 

coffee, eating, typing, writing, talking, jogging, walking upstairs, biking, walking downstairs, sitting, or 

standing.  

Most of the existing frameworks aimed at recognition and counting of steps in running or walking and 

only a few previous studies focused on other types of exercises. while only a few ones included other 

types of exercises. As an example, in (23) a framework was proposed to categorize movements as 

crunches, shoulder lateral raises, bicep curls, push‐ups, and jumping jacks using the data stream from 

wrist-worn smartphone. Here, we proposed TrainingPal, a framework for identifying and counting 

number of repetitions of five popular cardio and five strength exercises. 

Material and Methods 

Dataset  

Considering the fact that data collection process involved negligible risk for the subjects, the study was exempted 

from the institutional ethics committee approval. We used the built-in magnetometer, 3D-accelerometer, and 

gyroscope of Samsung Galaxy S7 edge. The smartphone was attached by using an armband to the outer side of 

participants’ arm (about 10 to 12 cm below the shoulder) . 

Two female (aged 29 and 35) and two male (aged 31 and 25) participants were asked to perform five types of cardio 

exercises and five different strength exercises. Cardio exercises were Elliptical, Rowing, Walking on the treadmill, 

Running on the treadmill, and Jumping jack. Resistance exercises were Squat, Lunge, Sit-up, Push-up, and Bench 
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dip.  Speed for walking on the treadmill ranged from 4.8 to 7.7 km/h while running speed varied from 9.7 to 14.5 

km/h. 

We collected data from participants in multiple session and then divided each session into multiple sets of doing the 

exercises for the ease of participants.  Prior to each session the armband was worn again by the user to ensure that 

the algorithm is robust to small changes in the places, where armbands are attached to the subjects  . 

We counted the repetitions, using the data stream from a video camera. The signal was separated manually based on 

the video. The video and the smartphone times had been synchronized before data collection . 

Table 1 and 2 shows the description of the cardio and resistance exercises included in the dataset. 

 

    Table 1. Included cardio exercises and number of sets, sessions, and repetitions for each exercise. 

Type  Total Duration 

(S) 

 No. of 

Sets  

 No. of 

Repetition 

 No. of 

Sessions 

Walking*  2880  48  2659  8 

Running*  2400  40  3586  8 

Elliptical**  6000  10  7967  10 

Rowing***  3600  24  3731  12 

Jumping Jack  810  27  988  27 

      *collected using treadmill 

   **collected using elliptical machine 

***collected using rowing machine 

 

 

 

    Table 2. Included resistance exercises and number of sets, sessions, and repetitions for each exercise. 

Type  Total Duration 

(S) 

 No. of 

Sets  

 No. of 

Repetition 

 No. of 

Sessions 

Squat  720  8  301  8 

Lunge  720  8  782  8 

Sit-Up  720  12  167  12 

Push-Up  480  8  155  8 

Bench Dip  600  10  276  10 

 
 

Proposed Framework 

The proposed framework comprised recognition and counting modules. The recognition module is a classifier to 

categorize the input signal recorded into ten different classes, corresponding to ten types of exercise included in this 

study . 

The recognition module relies on a feature extraction and classifier sub-modules. Steps of the feature extraction 

module is illustrated in Figure 1. As indicated, a 12-dimensional feature vector including the accelerometer, 

gyroscope, and two sets of Euler angles in three directions was generated for each timestamp. To calculate the Euler 

angles, the TRIAD algorithm as suggested in (24) was utilized. 

The feature vector was then fed into four different, namely support vector machine (SVM), bag of decision trees, K-

nearest neighbor, discriminant analysis, were investigated to find the best classifier . 

The counting module involves a Savitzky-Golay smoothing filter and a peak/valley detection unit followed by a 

peak/valley matching unit (25). Firstly, by using the Savitzky-Golay filter, the high frequency noise is eliminated 

from the signal recorded by accelerometer, gyroscope, and magnetometers. Then the dominant axis for the 

magnetometer (an axis with the highest range) was identified. For each type of exercise, among seven available 

signals (three from accelerometer, three from gyroscope, and the signal from the dominant axis of magnetometer), 

we selected three signals with the highest standard deviation were selected. The peaks and valleys were extracted 

from each one of the selected signals. If a peak or valley in particular timestamps was present in two (out of three) 

data streams, the timestamp was recorded as a full or half repetition of an exercise.  Depending on the exercise type, 

each one or two local valleys/peaks could be equivalent of one repetition 
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Figure 1. Steps of TrainingPal for recognition of different types of exercises 

Evaluation 

We evaluated the performance of the TrainingPal in two different cross-validation scenarios. In the first one, in each 

iteration of cross-validation, one of the sets was left out as the test data and the rest of the data was used as training 

set. We called this scenario leave-one-set-out cross validation. In the second scenario, each time all recording from a 

single subject left out as the test set and the classifiers were trained using the data from all subjects except for the test 

subject. By doing so, we ensured the classifiers were not over-fitted to the data. The reason for including the first 

scenario was possibility of personalizing the smartphone applications for their users. In another word, it would be 

possible for a user to train their smartphones’ applications based on their own data (the algorithm would learn each 

individual’s unique way of doing a movement) and later using the application. Therefore, there was point in doing 

both validation scenarios   . 

The algorithm was implemented and tested using MATLAB 2017b (Mathwork, MA, USA). The smartphone 

sensor data was collected using AndroSensor (developed by Fiv Asim and available for free on Google Play) and 

saved a csv file. The csv files were processed in MATLAB and data was fed into the machine learning model. To 

evaluate the accuracy of the model for various exercises and in each one of the scenarios, correct classification 

percentage was calculated (tables 3-6). The correct classification percentage represent percentage of correctly 

identified exercises divided by the total number of exercises in each one of the scenarios. We also explored how 

misclassified exercises were distributed across various types of exercises (Figure 2) . 

We also investigated the accuracy of counting algorithm. To do so, we manually counted the exercises in each 

session and then divided the differences between actual number of repletion and the number of cycles segmented by 

the algorithm. By dividing this difference by the total number of exercises, the error rate was found. The accuracy is 

calculated by subtracting the error rate from 1. 

Results 

Accuracy of the framework in the recognition task 

Table 3 and 4 shows the accuracy of different classifiers in recognizing various types of exercises in leave-one-

set-out cross-validation scenario. Similarly, table 5 and 6 shows the accuracies of different classifiers in 

recognizing the cardio and resistance exercises in the leave-one-subject-out cross validation. In both scenarios, 

the recognition accuracy varied across different types of classifiers.  

As indicated in table 3 and 5, all four classifiers performed well in identifying workout using elliptical machine 

and rowing. This is expected, as the sensory data from these two exercises differ considerably form the rest of the 

exercises. 

3D-accelerometer 

 

 
3D-gyroscope 

TRIAD  algorithm        

 

 
3D-magnetometer 
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 Also, the error rate for cross validation was mostly lower than in leave-one-set-out cross-validation scenario 

compared to that of leave-one-subject-out cross-validation. The most probable reason for this could be the fact 

that in the leave-one-set-out cross-validation scenario, only one set was left out as the test set and other sets of the 

similar subjects was used to train model. Therefore, the classifier had learnt specific patterns of each subject from 

the training data. In the leave-one-subject-out cross-validation, such information was not available . 

The results also showed that the k-nearest neighbor performed well in in the leave-one-set-out cross-validation 

scenario while did not reach a high level of accuracy in the leave-one-subject-out cross-validation for elliptical 

machine work-out, jumping jacks, squats, and lunges. This could be due to over-fitting of the classifier to the 

subjects . 

 

    Table 3. Performance of various classifiers in the identification of various types of cardio exercises in the leave-

one-sequence -out cross-validation scenario 

Type  SVM  Decision 

Tree 

Ensemble 

 K-nearest 

neighbor 

 Discrimina

nt analysis 

Treadmill -Running  79.72%  89.13%  89.86%  39.86% 

Treadmill -Walking  96.38%  94.92%  94.92%  78.00% 

Elliptical machine  99.32%  100.00%  100.00%  99.32% 

Rowing machine  99.69%  100.00%  100.00%  99.69% 

Jumping jack  98.52%  100.00%  100.00%  87.53% 

 

    Table 4. Performance of various classifiers in the identification of various types of resistance exercises in the 

leave-one-sequence -out cross-validation scenario 

Type  SVM  Decision 

Tree 

Ensemble 

 K-nearest 

neighbor 

 Discrimina

nt analysis 

Squat  67.36%  100.00%  100.00%  62.50% 

Lunge  100.00%  100.00%  100.00%  78.06% 

Sit-up  75.28%  99.58%  99.58%  55.69% 

Push-up  100.00%  100.00%  97.92%  30.42% 

Bench dip  93.50%  98.00%  98.33%  78.17% 

 

Table 5. Performance of various classifiers in the identification of various types of cardio exercises in the leave-one-

subject -out cross-validation scenario 

Type  SVM  Decision 

Tree 

Ensemble 

 K-nearest 

neighbor 

 Discrimina

nt analysis 

Treadmill -Running  96.01%  97.08%  90.17%  79.65% 

Treadmill -Walking  92.13%  95.00%  91.13%  79.25% 

Elliptical machine  96.40%  59.58%  11.82%  26.80% 

Rowing machine  99.69%  98.75%  98.75%  44.06% 

Jumping jack  83.33%  79.01%  38.52%  1.85% 

 

    Table 6. Performance of various classifiers in the identification of various types of resistance exercises in the 

leave-one-subject -out cross-validation scenario 

Type  SVM  Decision 

Tree 

Ensemble 

 K-nearest 

neighbor 

 Discrimina

nt analysis 

Squat  71.67%  95.00%  77.78%  71.25% 

Lunge  63.19%  37.50%  67.22%  73.19% 

Sit-up  72.78%  100.00%  100.00%  56.53% 

Push-up  100.00%  97.92%  100.00%  0.00% 

Bench dip  60.33%  77.33%  100.00%  58.50% 
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The average acquired accuracy across all exercise types are also shown. Overall, the results suggest that the SVM 

achieved the best overall accuracy for the exercise recognition. 

Figure 4 shows the SVM classifier performance in the leave-one-subject-out cross-validation. Each bar indicates 

one of the exercises and the labels from the SVM is shown as the segments of each bar. For example, SSVM 

correctly classified running in 92.13% and it mostly misclassified running as walking or elliptical. As expected, 

usually, the resistance exercises were not misclassified as cardio ones and vice versa. Therefore, the classifier 

performed well in recognizing the broader type of exercise (cardio or resistance). 

 

Figure 2- The performance of the SVM classifier in the leave-one-subject out scenario 

 

Accuracy of the framework in counting task 

Table 7 and 8 indicate the accuracy of the proposed framework for counting of cardio and resistance exercises, 

respectively. The lowest accuracies were obtained in counting bench dip and sit-ups while the framework 

achieved its highest accuracy for counting the elliptical machine workouts. The low accuracies could be due to 

the fact that the recorded durations of sit-ups and bench dip were relatively long for all participants and in most of 

cases they could not continue the exercise without resting in between phases of each attempt. As shown in the 

range columns of the table, in cardio exercises for all subjects the error rate was low, however larger variations in 

accuracies for different subjects were observed in counting repetitions of the strength exercises. 

 

 Discussion 

In this study, a framework for identifying and counting ten different types of popular exercises were 

proposed. These exercises included cardio and resistance workouts. The included cardio exercises were 

running, rowing, walking, elliptical machine workout, and jumping jack while the resistance exercises 

were push-up, sit-up, squat, bench-dip, and lunge. 
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The results suggested that the performance of various classifiers differed.  The best classifier was SVM, 

which achieved an accuracy of 91.71% for identifying different exercises in a scenario, where none of the 

participants’ data was used during the training phase of SVM . 

In counting different exercises, the proposed framework achieved a range of accuracy. The accuracy of 

the proposed framework was above 90% for all exercises.  The promising results suggest that the 

proposed framework could be potentially extended to other types of wearable devices such as wrist-worn 

smart watches.  

The current study has number of limitations. Although relatively large number of repetitions were 

available for each exercise, we only included four individuals. This is one the limitations of our study. 

This work was a proof-of-concept study to present feasibility of such system. Collecting a larger dataset 

and further validating the model could be a potential avenue for the future work. Such dataset for the 

future work should include subjects with different types of body shapes. 

In spite of the above-mentioned limitation, it should be noted that despite limited number of individual, in 

leave-one-subject out scenario, in each iteration the model was trained in a way completely blinded to that 

test subject’s data. High accuracy level in the leave-one-subject out evaluation scenario provides 

supporting evidences that the algorithm exhibit robustness against inter-subject differences in performing 

the exercises. Another limitation of the current study is collecting the data using single type of 

smartphone. As a potential future work, performance of various types of smartphones for data collection 

could be compared. 

Conclusion 

In this study, we proposed TrainingPal for identifying and counting number of common physical 

exercises. We showed that, when properly trained, the data for smartphone sensor can be used for 

identifying and counting both cardio and strength exercises. TrainingPal can provide feedbacks to the 

users about their speed in doing exercises. Specifically, in strength exercises tracking speed could help in 

avoiding training errors and overuse injuries. As an example, performing squats too fast could result in 

injuries to knee. A platform like TrainingPal, which tracks the squats, could give an estimate about user’s 

speed and hence users can be warned if they are performing exercises in an improper speed. Such system 

can be integrated to web-based health documentation system of fitness centers (26) to automatically 

document user’s progress over time.  
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 چکیده فارسی

 

 شناسایی و شمارش حرکات رایج ورزشی بر اساس دادگان حسگر گوشی همراه به کمک یادگیری ماشین

 2زیبا گندمکار، 1*رضا سارنگ ،1گندمگارمحمد 

 .، ایرانتهران ،آزاد اسلامی  دانشگاه ،علوم تحقیقاتواحد  ، فنیدانشکده ، مهندسی ورزشگروه  .1

 دانشکده پزشکی، دانشگاه سیدنی، سیدنی، استرالیا. .2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 نیدادند ا یرا در خود جا اینرشیال هستند. یحسگرها ای روسکوپیحسگر همانند ژ دارای انواع مختلفیهوشمند م یها یگوشامروزه 

. در این مقاله، یک چارچوب برای شمارش و شناسایی دنیایبه کمک ما ب یحرکات ورزش شمارشو  ییشناسا یبرا توانند یحسگرها م

و شمارش  ییرا شناسا ینوع حرکت قدرت پنجو  وینوع حرکت کارد پنج توان یارائه داده شده است که با کمک آن م ات ورزشیحرک

در قدرتی  حرکات .باشد یو پروانه م الپتیکال نیاستفاده از ماش ،پارو زدن ،راه رفتن ،دنیدو در نظر گرفته شده ویبه حرکات کارد .کرد

 یحرکات ورزش نیهر کدام از ا ییعلاوه بر شناسا .باشد یم مکتین پیبالا و د ،لانچ ،اسکات، شنا ،نظر گرفته شده شامل دراز و نشست

با ارائه داده شده ا تمیالگور یابیو ارز وزشآم یبرا  شمارد.ب زیحرکات را ن نیاز ا کیتواند تعداد انجام هر  یارائه داده شده م تمیالگور

باند  کیهمراه با استفاده از  یگوش نیا .شد یآور سامسونگ داده جمع اج۷اس  یهوشمند گلکس یگوش کی یحسگرها استفاده از

ها به عنوان دادگان تست و دادگان سایر  برای ارزیابی هر بار داددگان یکی از سوژه پایین شانه بسته شد.متر  یسانت 12تا  10 یکش

. افتیانواع مختلف ورزش دست  صیتشخ یبرا %91به صحت  ، در کل،چهارچوب ارائه داده شدهها برای آموزش استفاده شد.  سوژه

 یبرا تواند یشده م دهکه چهارچوب ارائه دا دهد ینشان م هحاصل جینتا .باشد یم %90شمارش ورزش ها  صحت این چهارچوب برای

ادوات  ریسادادگان ثبت شده از به  میتعم تیچهارچوب قابل نیا .در نظر گرفته شده استفاده شود یها و شمارش ورزش ییشناسا

 را دارد.  یدنیپوش

 ورزشی.حسگرهای اینرشیال، گوشی هوشمند، شمارش حرکات ورزشی، شناسایی حرکات  :یدیکل یهاواژه

 

 

 

 

 

 

 

 

 


