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Abstract- These days randomized-based population optimization algorithms are in wide use in different branches of 

science such as bioinformatics, chemical physics and power engineering. An important group of these algorithms is 

inspired by physical processes or entities’ behavior. A new approach of applying optimization-based social 

relationships among the members of a community is investigated in this paper. In the proposed algorithm, search 

factors are indeed members of the community who try to improve the community by ‘following’ each other. FOA 

implemented on 23 well-known benchmark test functions. It is compared with eight optimization algorithms. The paper 

also considers for solving optimal placement of Distributed Generation (DG). The obtained results show that FOA is 

able to provide better results as compared to the other well-known optimization algorithms. 
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1. INTRODUCTION 

The outgrowing magnitude of optimization problems and 

the urge to find a response as quickly as possible has 

resulted in the diminishing use of classical methods in 

solving optimization problems. Currently, use of 

randomized search algorithms, instead of searching all 

dimensions of a problem, is becoming more common. In 

this regard, application of Heuristic Search Algorithms 

(HSA) has noticeably increased lately[1-4]. Heuristic 

algorithms have proven their ability in many fields of 

science, like transportation [5], bioinformatics [6], 

energy [7], chemical physics [8], electronics [9], and 

other related fields. Finding a mathematical model to be 

applied in HSA is difficult and even impossible. 

Therefore, these algorithms are called the black box 

optimization algorithms [10]. 

In population-based methods, members interact and 

transfer information by applying different methods, like 

Genetic Algorithm (GA) which is inspired by genetics 

and evolution (1975) [11], Artificial Immune System 

(1986) by imitating the human body immune system 

[12], Ant Colony Optimization (ACO) by simulating ant 

behavior in searching food (1991) [13], and Particle 

Swarm Optimization (PSO) by imitating birds’ social 

behavior (1995) [14].  

In the present paper, a new approach of applying the 

mutual relationships between the community members is 

used in designing the optimization algorithm. In this 

algorithm, the ‘following’ aspect of the community 

members is used to design an optimization algorithm 

named as the Following Optimization Algorithm (FOA).  

A brief history of the heuristic optimization methods is 

presented in section two. The proposed algorithm is 

described in section three and section four encompasses 

the related explanations. Results are described in section 

five and conclusions are presented in section six. 

2. A BRIEF HISTORY OF META-HEURISTIC 

PTIMIZATION ALGORITHMS 

A meta-heuristic optimization algorithm is a key to 

finding a proper answer to the optimization problem that 

can solve the problem by having the minimum minute 

information in the most immediate possible time.  In 

ancient Greece the word "heuristic" meant “to know", "to 

find", "to discover", or " to guide an investigation" [15, 

16]. In a more complete definition, a heuristic method is 

a strategy that neglects a part of information to arrive at 

a quick response with the highest precision by the 

maximum time saving in comparison to the complex 

methods [17].  

Heuristic search algorithms are those algorithms that are 

inspired and formed by biological and physiological 

processes of mother nature.  Most of these algorithms 
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function within the population. In the recent past, a large 

number of population-based algorithms, derived from 

social interactions among community members, have 

been presented. The most famous and widely-used are: 

Genetic Algorithm (GA) [11], Simulated Annealing (SA) 

[18], Harmony Search (HS) [19], Artificial Immune 

System (AIS) [20], Ant Colony Optimization (ACO) 

[21], Particle Swarm Optimization (PSO) [14], and 

Bacterial Foraging Algorithm (BFA) [22]. GA is 

modelled by genetic laws based on the Darwin's theory 

[11]. SA is proposed based on the annealing processes in 

metallurgy [18]. HS is an algorithm in which the process 

of improving melody is taken into account by the 

composer while composing [19]. AIS is designed by 

imitating the human body immune system [20]. ACO 

simulates ants’ behaviors in searching food [21]. PSO 

depicts the social behavior of a flock of birds while 

migrating [14]. This algorithm simulates the co-operation 

among birds’ communities. Each particle tries to arrive at 

the optimum position within the search space by using its 

own previous experience and by taking the best 

advantage of consultations received from its neighboring 

particles [23]. BFO is inspired by observing the social 

behavior of I-coil bacteria while searching for food [22]. 

All mentioned algorithms use the statistical property and 

the randomized phenomena in their application as exists 

in nature. In some Central Force Optimization 

Algorithms, known as metaphors of the universal law of 

gravity, the mentioned randomized phenomena are not 

used. This means that these algorithms have the 

deterministic property [24].  

Despite classical methods, the heuristic search methods 

function randomly and they search the searching space in 

a parallel mode.  Besides, they do not use the space 

gradient information while classical methods do. Indeed, 

heuristic search-based methods merely use the suitability 

function to navigate their search. However, they can 

arrive at the answer of the optimization problem since 

their intelligence is known as the swarm intelligence. The 

swarm intelligence appears in cases where there is a 

population of unfitted elements each of which shows a 

simple behavior under certain circumstances and has 

mutual influences on each other locally. The members’ 

local interactions make unexpected para-local effects. 

Thus, the whole system can arrive at the solution without 

having a central controller.  

It is proper to note that the members’ behavior can 

organize the system internally by making use of 

properties like the positive feedback, the negative 

feedback, a balance between exploration and 

exploitation, and some other interactions. This internal 

organization is called self-organization [25]. Although 

many heuristic algorithms have been introduced, 

improved and used in various scientific fields by 

investigators, there still is no algorithm to satisfactorily 

respond and optimize all problems of both engineering 

and other scientific fields. This article is an attempt to 

find a new heuristic algorithm by applying which 

problems of the previous algorithms can be resolved.  

The proposed method and its details are described in the 

following section.  

3. FOLLOWING OPTIMIZATION ALGORITHM 

In the approach proposed here, the optimization process 

is done by the aid of the chosen community social 

relationships within an artificial system during a discrete 

time. The system space is the same as the domain of 

problem definition. Hence, the community members are 

used as tools to convey information. Besides, the 

designed optimum finder can be used to solve any 

optimization problem in which a response can be 

defined as a position in space and its similarity with 

other responses can be declared as a comparison among 

members regarding their social standing. Noticeably, 

members' social standing is determined concerning the 

objective function. FOA is defined in two general steps: 

1- making an artificial system with the discrete time 

within the problem space, the initial navigation of 

members, determining the governing laws and 

principles, arranging parameters, 2- passing time to 

arrive at the stop time. 

3.1. Making system, determining principles and 

organizing parameters 

In the first step, the system space is determined. This 

space includes a multi-dimensional coordinate within the 

problem definition space. Each point of this space is a 

response to the problem. Searching elements are a set of 

members who live in the community. Indeed, each 

member interacts with all other members. Besides, each 

member has a social standing characteristic that is a 

position in space which indeed is the answer to the 

optimization problem.  

After making the system, its governing principles are 

determined. In the present paper, it is supposed that the 

community members follow each other. Now consider 

the system as a set of m members. The position of any 

member is a point in the space where it is an answer to 

the optimization problem. In relation 1, the d dimension 

of member i is shown as 𝑥𝑖
𝑑.  

(1) 𝑋𝑖 = (𝑥𝑖
1, … , 𝑥𝑖

𝑑, … , 𝑥𝑖
𝑛) 

 At first, the initial position of the community members 

is determined randomly within the problem definition 

space. This community paves the way to the balance state 

(response). concerning interactions held among 
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members. Now:   

(2) 𝑥𝑖
𝑑 = (1 − 𝑓𝑟)𝑥𝑖,0

𝑑 + 𝑓𝑟 𝑥𝑙𝑒𝑎𝑑𝑒𝑟
𝑑  

(3) 𝑓 = 1 − 𝑒𝑥𝑝 ( 
−𝑡1.5

𝑇
 ) 

(4) 𝑥𝑙𝑒𝑎𝑑𝑒𝑟 = {
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛: 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 min(𝑓𝑖𝑡)

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛: 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 max(𝑓𝑖𝑡) 
 

In the above equations, 𝑥𝑖,0
𝑑  refers to the initial balance 

point along with the d dimension of member i, r 

represents a random number with a uniform distribution 

within [0 − 1] span used to preserve the search random 

state.  𝑥𝑙𝑒𝑎𝑑𝑒𝑟   is the highest member of the society 

regarding its social standing who leads the community 

and indeed all members follow him/her. Moreover, 

𝑥𝑙𝑒𝑎𝑑𝑒𝑟
𝑑   is the d-th dimension of the position of the 

mentioned leader. Symbol ‘f’ represents the ‘following’ 

co-efficient, t is the iteration count, T is the maximum 

number of iterations and fitness is the community fitness 

vector. 

3.2. Passing time and the parameters updating process 

At the beginning of making the system, each member is 

randomly placed in any point across (throughout) the 

space where it is considered as the answer to the problem. 

At any moment of time, each member is assessed and 

his/her displacement is computed by operating relations 

(1) through (4). In the next iteration, the given member is 

placed in the computed position. The system parameter is 

the following co-efficient f  that is updated in each phase 

based on relation (3). The stop position can be 

determined after passing a finite time. Different steps of 

the following optimization algorithm are shown below 

and the flowchart is shown in Fig. 1. 

1- Determine the system space and set initial parameters. 

2- Generate initial population. 

3- Community assessment. 

4- Determine the community leader. 

5- Update parameter f . 

6- Update members' position. 

7- Repeat stages 3 to 6 until the stopping criterion is 

satisfied. 

8- The ending phase.  

4. CHARACTERISTICS OF THE FOA 

In the proposed algorithm, a new method of optimization 

is devised concerning the community members’ 

obedience and behaviour in following each other. In this 

algorithm, a set of people search the chosen space 

randomly. Social standings are used as tools to convey 

information. Each member affected by the community 

can approximately understand his/her surrounding space. 

The algorithm must be developed such that the members' 

positions are improved as time passes. The applied 

strategy to fulfil this aim is to organize the following co-

efficient ‘f’. Among the proposed solutions to optimize 

an algorithm, improving its exploring power has the 

highest importance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. ‘Following’ optimization algorithm flowchart. 

In optimization two challenges exist: exploration and 

exploitation. In the realm of exploration, each 

optimization algorithm must have enough power to 

extensively search the search space and its search should 

not be limited to some restricted locations [25]. 

On the other hand in the realm of exploitation, the 

algorithm’s ability in exploring/discovering the optimum 

points is under focused. In population-based algorithms, 

there is a need to comprehensively search space at the 

very early stages of running the algorithm.  Besides, the 
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algorithm must stress better search during initial 

iterations. However, as time passes, the algorithm’s 

exploration/detection ability becomes paramount.  Thus, 

the algorithm must find the position of each point by the 

aid of the population findings [26]. Interestingly, the 

above algorithm has the power to search space by 

considering a suitable number of members. Here, the 

proposed solution to improve and fortify the algorithm 

detection speed is indeed the following co-efficient 

effect. To fulfil this aim, the following co-efficient f is 

controlled by running relation (3). During the early 

iterations of the algorithm, there is a severe need for a 

proper search though it can arrive at better responses as 

time passes. Thus, the value of the following co-efficient 

f is controlled as a time variable entity. Accordingly, a 

proper value is chosen for the following co-efficient f at 

the beginning of running the algorithm that is increased 

as time passes to arrive at its maximum value.  

Based on the value of the following co-efficient f in each 

iteration, the community members follow the member 

who has the highest social standing. During initial 

iterations, the following co-efficient is set to its minimum 

rate that makes the search space well explored in order to 

prevent the algorithm from settling in the local optimum 

positions. The following co-efficient f grows bigger as 

time passes.  Since it is known that people gather around 

better positions with the passing of time and since it is 

necessary to explore space with smaller and more precise 

steps, members’ impressibility and influence on each 

other is increased as the time goes. Thus, it is expected to 

view members at better positions as the time passes.  

5. RESULTS 

5.1. Benchmark test functions 

Performance of the proposed algorithm is assessed by 

applying 23 standard criterion functions [27]. The 

standard benchmark test functions are shown in Tables 1 

through 3.

Table 1. Unimodal test functions.

[−100,100]𝑚 𝐹1(𝑥) = ∑ 𝑥𝑖
2

𝑚

𝑖=1
 

[−10,10]𝑚 𝐹2(𝑥) = ∑ |𝑥𝑖| + ∏ |𝑥𝑖|
𝑚

𝑖=1

𝑚

𝑖=1
 

[−100,100]𝑚 𝐹3(𝑥) = ∑ (∑ 𝑥𝑖

𝑖

𝑗=1
)

2𝑚

𝑖=1
 

[−100,100]𝑚 𝐹4(𝑥) = max { |𝑥𝑖| , 1 ≤ 𝑖 ≤ 𝑚 } 

[−30,30]𝑚 𝐹5(𝑥) = ∑ [100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)2)

𝑚−1

𝑖=1
] 

[−100,100]𝑚 𝐹6(𝑥) = ∑ ([𝑥𝑖 + 0.5])2
𝑚

𝑖=1
 

[−1.28,1.28]𝑚 𝐹7(𝑥) = ∑ 𝑖𝑥𝑖
4 + 𝑟𝑎𝑛𝑑𝑜𝑚(0,1)

𝑚

𝑖=1
 

Table 2. Multimodal test functions.

[−500,500]𝑚 𝐹8(𝑥) = ∑ −𝑥𝑖  sin (√|𝑥𝑖|)
𝑚

𝑖=1
 

[−5.12,5.12]𝑚 𝐹9(𝑥) = ∑ [ 𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖) + 10]

𝑚

𝑖=1
 

[−32,32]𝑚 𝐹10(𝑥) = −20 exp (−0.2√
1

𝑚
∑ 𝑥𝑖

2
𝑚

𝑖=1
) − exp (

1

𝑚
∑ 𝑐𝑜𝑠(2𝜋𝑥𝑖)

𝑚

𝑖=1
) + 20 + 𝑒 

[−600,600]𝑚 𝐹11(𝑥) =
1

4000
∑ 𝑥𝑖

2
𝑚

𝑖=1
−  ∏ 𝑐𝑜𝑠

𝑚

𝑖=1
(

𝑥𝑖

√𝑖
) + 1 

[−50,50]𝑚 

𝐹12(𝑥) =
𝜋

𝑚
 {10 sin(𝜋𝑦1) + ∑ (𝑦𝑖 − 1)2[1 + 10 sin2(𝜋𝑦𝑖+1)] + (𝑦𝑛 − 1)2

𝑚

𝑖=1
} + ∑ 𝑢(𝑥𝑖, 10,100,4)

𝑚

𝑖=1
 

𝑢(𝑥𝑖 , 𝑎, 𝑖, 𝑛) =  {

𝑘(𝑥𝑖 − 𝑎)𝑛               𝑥𝑖 > −𝑎
0                    − 𝑎 <  𝑥𝑖  < 𝑎

𝑘(−𝑥𝑖 − 𝑎)𝑛           𝑥𝑖 < −𝑎
 

[−50,50]𝑚 

𝐹13(𝑥) = 0.1 { sin2(3𝜋𝑥1) + ∑ (𝑥𝑖 − 1)2[1 + sin2(3𝜋𝑥𝑖 + 1)] + (𝑥𝑛 − 1)2
𝑚

𝑖=1

[1 + sin2(2𝜋𝑥𝑚)]}

+ ∑ 𝑢(𝑥𝑖 , 5,100,4)
𝑚

𝑖=1
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Table 3. Multimodal test functions with fixed dimension.

[−65.53,65.53]2 𝐹14(𝑥) = (
1

500
+ ∑

1

𝑗 + ∑ (𝑥𝑖 − 𝑎𝑖𝑗)
62

𝑖=1

25

𝑗=1
)

−1

 

[−5,5]4 𝐹15(𝑥) = ∑ [𝑎𝑖 −
𝑥1(𝑏𝑖

2 + 𝑏𝑖𝑥2)

𝑏𝑖
2 + 𝑏𝑖𝑥3 + 𝑥4

]

2
11

𝑖=1
 

[−5,5]2 𝐹16(𝑥) = 4𝑥1
2 − 2.1𝑥1

4 +
1

3
𝑥1

6 + 𝑥1𝑥2 − 4𝑥2
2 + 4𝑥2

4 

[-5,10] × [0,15] 𝐹17(𝑥) = (𝑥2 −
5.1

4𝜋2
𝑥1

2 +
5

𝜋
𝑥1 − 6)

2

+ 10 (1 −
1

8𝜋
) 𝑐𝑜𝑠𝑥1 + 10 

[−5,5]2 
𝐹18(𝑥) = [1 + (𝑥1 + 𝑥2 + 1)2(19 − 14𝑥1 + 3𝑥1

2 − 14𝑥2 + 6𝑥1𝑥2 + 3𝑥2
2)] × [30 + (2𝑥1 − 3𝑥2)2 × (18 − 32𝑥1

+ 12𝑥1
2 + 48𝑥2 − 36𝑥1𝑥2 + 27𝑥2

2)] 

[0,1]3 𝐹19(𝑥) = − ∑ 𝑐𝑖exp (− ∑ 𝑎𝑖𝑗(𝑥𝑗 − 𝑃𝑖𝑗)
2

3

𝑗=1
)

4

𝑖=1
 

[0,1]6 𝐹20(𝑥) = − ∑ 𝑐𝑖exp (− ∑ 𝑎𝑖𝑗(𝑥𝑗 − 𝑃𝑖𝑗)
2

6

𝑗=1
)

4

𝑖=1
 

[0,10]4 𝐹21(𝑥) = − ∑ [(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)𝑇 + 6𝑐𝑖]−1
5

𝑖=1
 

[0,10]4 𝐹22(𝑥) = − ∑ [(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)𝑇 + 6𝑐𝑖]−1
7

𝑖=1
 

[0,10]4 𝐹23(𝑥) = − ∑ [(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)𝑇 + 6𝑐𝑖]−1
10

𝑖=1
 

5.2. Algorithm for comparison 

The performance of FOA has been compared with eight 

optimization algorithms: Genetic Algorithm (GA) [11] , 

Particle Swarm Optimization (PSO) [14], Gravitational 

Search Algorithm (GSA) [28], Teaching–Learning-

Based Optimization (TLBO) [29], Grey Wolf Optimizer 

(GWO) [30], whale optimization algorithm (WOA) 

[31],Grasshopper Optimization Algorithm (GOA) [32] 

and Emperor Penguin Optimizer (EPO) [33]. 

5.3. Performance comparison 

Unimodal high-dimensional functions: Average of 

results obtained during 20 runs of the algorithm are 

shown in Table 4. Functions F1 to F7 in Table 4 are 

considered as monostatic functions. These results show 

that FOA has a better performance in comparison to other 

optimization algorithm.  

Multimodal high-dimensional functions: In multi-static 

functions like functions F8 to F13, Table 5, by increasing 

functions dimensions local responses are increased 

exponentially. Thus, finding their minimum responses is 

highly difficult.  In these functions, arriving at the answer 

close to the desired response is inferred as the algorithm’s 

efficiency in passing through local wrong responses. 

Results obtained by assessing functions F8 to F13 after 20 

times running of algorithms are shown in Table 5. Among 

all these algorithms FOA has a better performance. 
Multimodal low-dimensional functions: Functions F14 

to F23, Table 6, have the lowest number of dimensions and 

the lowest number of local responses. Results obtained 

after running algorithms for 20 times are shown in Table 

6.  These results well depict the FOA better performance 

in comparison to other optimization algorithm. 

Table 4. Minimization results of benchmark functions in Table 1.

FOA EPO GOA WOA GWO TLBO GSA PSO GA  

2.3E-09 3.09E-08 2.54E-08 3.21E-08 2.93E-08 3.51E-08 3.75E-08 1.8E-03 23.13 Average best-so-far 

F1 8.86E-12 1.16E-09 9.07E-10 1.14E-09 1.03E-09 1.33E-09 1.53E-09 1.2E-03 21.87 Median best-so-far 

8.1E-08 9.75E-06 9.27E-06 1.12E-05 9.22E-06 1.29E-05 1.37E-05 5.0E-02 23.45 Average mean fitness 

3.94E-06 5.31E-05 4.48E-05 5.81E-05 4.89E-05 5.77E-05 6.81E-05 2.0 1.07 Average best-so-far 

F2 2E-07 2.40E-06 2.13E-06 2.40E-06 2.39E-06 2.44E-06 2.70E-06 1.9E-03 1.13 Median best-so-far 

4.6E-05 5.65E-04 4.88E-04 5.72E-04 5.14E-04 6.41E-04 7.21E-04 2.0 1.07 Average mean fitness 

295.381 428.5135 327.185795 434.5015 376.0085 474.3833 515.8255 4.1E03 5.6E03 Average best-so-far 

F3 56.93836 222.0258 154.51697 244.2885 211.9048 273.7557 310.8519 2.2E03 5.6E03 Median best-so-far 

399.656 467.3401 413.335365 460.8487 422.5738 506.003 596.5089 2.9E03 5.6E03 Average mean fitness 

0.785953 0.993865 0.858736823 1.080866 0.875257 1.135605 1.205542 8.1 11.78 Average best-so-far 

F4 0.402746 0.525235 0.446200961 0.529933 0.454636 0.543148 0.539036 7.4 11.94 Median best-so-far 

5.210601 6.903329 5.571285788 6.923197 5.870374 7.554117 8.759519 23.6 11.78 Average mean fitness 

62.8803 100.7185 71.00497787 99.36905 85.70288 101.8052 111.0475 3.6E04 1.1E03 Average best-so-far 

F5 6.9483 26.15271 17.457305473 29.83538 24.395652 33.06776 36.65635 1.7E03 1.0E03 Median best-so-far 

109.1664 140.6996 122.2325338 139.6439 136.6725 146.3147 149.2912 3.7E04 1.1E03 Average mean fitness 

0 9.47E-07 8.7960E-12 1.08E-06 9.18E-8 1.12E-05 1.17E-04 1.0E-03 24.01 Average best-so-far 

F6 0 6.20E-07 5.6426E-13 7.05E-07 5.58E-8 7.47E-06 8.17E-05 6.6E-03 24.55 Median best-so-far 

0 8.19E-02 6.6251E-5 8.75E-02 7.30E-03 9.34E-01 9.39E-03 0.02 24.52 Average mean fitness 

0.0229 0.031013 0.025915398 0.030744 0.026285 0.034787 0.036461 0.04 0.06 Average best-so-far 

F7 0.0079 0.017521 0.008077661 0.020184 0.0152 0.021833 0.024294 0.04 0.06 Median best-so-far 

0.8657 1.148805 0.884298485 1.250494 1.0152 1.471224 1.723781 1.04 0.56 Average mean fitness 

https://www.sciencedirect.com/science/article/pii/S0010448510002484
https://www.sciencedirect.com/science/article/pii/S0010448510002484
https://www.sciencedirect.com/science/article/pii/S0965997816300163
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Table 5. Minimization results of benchmark functions in Table 2.

FOA EPO GOA WOA GWO TLBO GSA PSO GA  

-12564.1 -10023.1 -12433.3 -11189.8 -12339.5 -8983.16 -7649.61 -9.8E03 -1.2E4 Average best-so-far 

F8 -12569.5 -10030.5 -12515.8 -11215.5 -12421.6 -8927.64 -7596.7 -9.8E03 -1.2E4 Median best-so-far 

-12501.1 -10049.4 -12483.2 -11235.2 -12387.2 -8963.13 -7625.17 -9.8E03 -1.2E4 Average mean fitness 

5.67E-07 2.89E-06 7.21E-07 9.65E-06 1.74E-06 4.02E-05 2.00E-04 55.1 5.90 Average best-so-far 

F9 4.76E-11 2.66E-10 5.74E-11 8.58E-10 6.72E-11 3.85E-09 3.80E-08 55.6 5.71 Median best-so-far 

2.3744 7.16236 4.51464 8.7214 7.808032 6.5655 5.897 72.8 5.92 Average mean fitness 

7.64E-06 3.90E-05 1.05E-05 1.38E-04 1.48E-05 4.64E-04 7.24E-04 9.0E-03 2.13 Average best-so-far 

F10 8.64E-07 3.93E-06 1.23E-06 1.23E-05 1.94E-06 7.38E-05 3.91E-04 6.0E-03 2.16 Median best-so-far 

8.31E-05 2.73E-04 9.37E-05 8.56E-04 1.19E-04 4.31E-03 4.53E-02 0.02 2.15 Average mean fitness 

0.0329 0.09272 0.036649 0.271735 0.078421 0.659285 0.229344 0.01 1.16 Average best-so-far 

F11 8.26E-10 9.35E-04 1.41E-04 2.75E-04 3.44E-04 1.66E-04 2.44E-04 0.0081 1.14 Median best-so-far 

000214 0.169546 0.95923 0.570567 0.542009 0.18194 0.6753 0.055 1.16 Average mean fitness 

4.59E-12 4.26E-11 7.79E-12 1.11E-10 1.86E-11 1.12E-10 1.20E-10 0.29 0.051 Average best-so-far 

F12 2.35E-14 2.46E-13 4.58E-14 6.69E-13 1.03E-13 2.83E-12 2.71E-11 0.11 0.039 Median best-so-far 

1.51E-11 4.13E-11 2.07E-11 1.12E-10 2.55E-11 2.64E-10 1.82E-09 9.3E03 0.053 Average mean fitness 

1.4E-10 1.36E-09 2.55E-10 4.62E-09 6.30E-10 1.40E-08 4.79E-08 8.291E-4 0.081 Average best-so-far 

F13 1.24E-12 7.29E-12 1.46E-12 1.98E-11 2.71E-12 1.23E-10 9.47E-10 2.463E-7 0.032 Median best-so-far 

3.26E-7 2.42E-06 5.51E-07 4.78E-06 1.03E-06 2.38E-05 6.71E-05 6.251E-2 0.081 Average mean fitness 

Table 6. Minimization results of benchmark functions in Table 3.

FOA EPO GOA WOA GWO TLBO GSA PSO GA  

0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 Average best-so-far 

F14 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 Median best-so-far 

0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 Average mean fitness 

9.4E-04 9.26E-04 9.35E-04 9.31E-04 9.21E-04 9.17E-04 9.12E-04 2.8E-03 4.0E-03 Average best-so-far 

F15 3.3E-05 3.25E-04 3.28E-05 3.27E-04 3.23E-04 3.22E-04 3.20E-04 7.1E-04 1.7E-03 Median best-so-far 

5.2-E03 1.54E-01 1.56E-01 1.55E-01 1.54E-01 1.53E-01 1.52E-01 215.6 4.0E-03 Average mean fitness 

-1.03163 -1.03136 -1.03136 -1.03136 -1.03136 -1.03136 -1.03136 -1.03136 -1.0313 Average best-so-far 

F16 -1.03163 -1.03136 -1.03136 -1.03136 -1.03136 -1.03136 -1.03136 -1.03136 -1.0313 Median best-so-far 

-1.03136 -1.03136 -1.03136 -1.03136 -1.03136 -1.03136 -1.03136 -1.03136 -1.0313 Average mean fitness 

0.3979 0.3979 0.3979 0.3979 0.3979 0.3979 0.3979 0.3979 0.3996 Average best-so-far 

F17 0.3978 0.3979 0.3979 0.3979 0.3979 0.3979 0.3979 0.3979 0.3980 Median best-so-far 

0.3999 0.4165 0.4125 05264 0.4015 0.8965 0.9526 2.4112 1.1696 Average mean fitness 

3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 5.70 Average best-so-far 

F18 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Median best-so-far 

3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 5.70 Average mean fitness 

-3.8628 -3.8628 -3.8628 -3.8628 -3.8628 -3.8628 -3.8628 -3.8628 -3.8627 Average best-so-far 

F19 -3.8628 -3.8628 -3.8628 -3.8628 -3.8628 -3.8628 -3.8628 -3.8628 -3.8628 Median best-so-far 

-3.8628 -3.8628 -3.8628 -3.8628 -3.8628 -3.8628 -3.8628 -3.8628 -3.8627 Average mean fitness 

-3.3099 -3.28005 -3.29299 -3.29813 -3.26889 -3.28169 -3.26538 -3.2369 -3. 2823 Average best-so-far 

F20 -3.3320 -3.28588 -3.29751 -3.3075 -3.2809 -3.29111 -3.27472 -3.2531 -3.3217 Median best-so-far 

-3.3098 -3.26808 -3.27929 -3.28913 -3.26879 -3.27271 -3.25648 -3.2369 -3. 2704 Average mean fitness 

-6.22713 -5.99554 -6.16590 -5.9699 -6.02935 -5.90225 -5.93613 -6.6290 -5.6605 Average best-so-far 

F21 -10.1532 -7.03038 -7.10096 -6.99546 -7.06551 -6.92589 -6.96062 -5.1008 -2.6824 Median best-so-far 

-6.11845 -5.69266 -5.74972 -5.66421 -5.72103 -5.60805 -5.63615 -5.7496 -5.6605 Average mean fitness 

-9.03047 -8.03153 -8.1121 -7.99172 -8.07163 -7.91237 -7.95206 -8.1118 -7.3421 Average best-so-far 

F22 -10.4029 -10.2989 -10.4022 -10.2474 -10.3502 -10.1456 -10.1963 -10.402 -10.3932 Median best-so-far 

-9.83367 -7.85179 -7.93066 -7.81259 -7.89114 -7.73514 -7.77376 -7.9305 -7.3421 Average mean fitness 

-9.71723 -6.6965 -6.76354 -6.66315 -6.72983 -6.59689 -6.62987 -6.7634 -6.2541 Average best-so-far F23 

-10.5364 -10.4314 -10.5361 -10.3793 -10.4838 -10.2762 -10.3277 -10.536 -4.5054 Median best-so-far 

-8.59024 -6.6958 -6.76269 -6.66262 -6.72915 -6.59674 -6.62959 -6.7626 -6.2541 Average mean fitness 

5.4.  FOA in power system application 

Optimization algorithms such as FOA have many 

applications in various sciences, especially power 

engineering. One can mention the following: Placement 

of Distributed Generation [34], Placement of battery 

energy storage [35], FACTS devices [36], Microgrid 

[37], Protection [38],Energy carrier [39] and operation of 

power plants [40] .In the next section, the placement of 

distributed generation is studied using FOA. 

5.5. Placement of Distributed Generation (DGs) 

The distribution system planning requires DGs to be 

placed properly within the distribution system. In 

definition, DG known as a small generator is responsible 

of generating Stand Alone and On Grid electricity.[41]. 

In placing DGs, some methods can be used. [42, 43] 

refers to the sizing and analytical method by which DGs 

can be placed and sized properly. The objective function 

of the mentioned reference is minimizing the loss. 

Minimizing the overall system loss and improving the 

system voltage profile are indeed two principal 

objectives of DGs optimal sizing and placement. The 

objective function is shown in equation (5). 

https://www.sciencedirect.com/science/article/pii/S0378779618300567
https://www.sciencedirect.com/science/article/pii/S0378779618300567
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𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝐾1𝐿𝑜𝑠𝑠 + 𝐾2  ∑ |𝑉𝑖 − 1|

𝑁𝐵

𝑖=1

 (5) 

Where 𝐾1  and 𝐾2  is weight coefficients, 𝐿𝑜𝑠𝑠  is overall 

system loss, 𝑁𝐵  is the number of buses and 𝑉𝑖  is the 

voltage of buses. 

In order to simulate the proposed problem, the IEEE 33-

bus radial network is used. The networks data, including 

the resistance and reactance of the lines and the loads 

connected to nodes, were presented in [44]. 

placement and sizing of DG units regarding the minimum 

value of the problem objective function are defined. The 

results for this case are shown in Table 7. It shows the 

effectiveness of FOA for finding the optimal placement 

and sizing of DGs. The obtained results are assessed 

comparing with other algorithm. FOA gives a significant 

reduction in total active power loss to be 71.052 kW with 

reduction of 64.9% referred to initial case. Three DGs are 

installed at buses 14, 24, and 29 with penetration 0.8547, 

1.1018, and 1.1812 MW, respectively. The minimum 

voltage level (0.974) is obtained at bus 33. 

Table 7. placement and sizing of DGs. 

Method Power 

loss  (kW) 

DG size (MW) and 

location 

Min. 

voltage 
(p.u.) 

GA 108.41 1.2461 (11), 0.2156 

(18), 1.2145 (33) 

0.981(29) 

PSO 103.22 0.9250 (11), 0.8630 
(16), 1.2 (32) 

0.980 (25) 

GSA 106.28 1.50 (11), 0.4228 

(29), 1.0714 (30) 

0.982(25) 

TLBO 105.34 1.1768 (8), 0.9816 
(13), 0.8297 (32) 

0.980(30) 

GWO 91.25 0.5876 (15), 0.1959 

(25), 0.783 (33) 

0.956(33) 

WOA 98.3 0.633 (17), 0.09 
(18), 0.9470 (33) 

0.963 (25) 

GOA 96.75 0.5724 (17), 0.107 

(18), 1.0462 (33) 

0.965 (29) 

EPO 88.65 0.5897 (14), 0.189 
(18), 1.0146 (32) 

0.965 (32) 

FOA 71.05 0.8547 (14), 1.1018 

(24), 1.1812 (29) 

0.974 (33) 

6. CONCLUSIONS 

A new optimization algorithm, called the Following 

Optimization Algorithm (FOA) is introduced in this 

paper.  FOA is characterized based on the community 

members' social standing. In a given community, people 

work to improve their community and make it ideal by 

following each other. FOA is a simple algorithm in which 

people in a society follow, consistent with the following 

co-efficient f in each iteration of the algorithm, a person 

who has the highest social status in the society. This 

parameter is set to have a better exploration and 

exploitation efficiency. To assess its performance, the 

proposed algorithm is tested for a set of standard 

benchmark test functions. In addition, the application of 

FOA was investigated on the optimal placement and 

sizing of DGs in power engineering. Results show that 

FOA has a better performance than the GA, PSO, GSA, 

TLBO, GWO, WOA, GOA and EPO algorithms. 
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