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Abstract- Electric vehicle (EV) aggregator, as an agent between electricity market and EV owners, participates in the 

future and pool market to supply EVs’ requirement. Because of uncertain nature of pool prices and EVs’ behavior, this 

paper proposed a two stage scenario-based model to obtain optimal decision making of an EV aggregator. To deal with 

mentioned uncertainties, the aggregator’s risk aversion is applied using conditional value at risk (CVaR) method in the 

proposed model. The proposed two stage risk-constrained decision making problem is applied to maximize EV 

aggregator’s expected profit in an uncertain environment. The aggregator can participate in the future and pool market 

to buy required energy of EVs and offer optimal charge/discharge prices to the EV owners. In this model, in order to 

assess the effects of EVs owners’ reaction to the aggregator’s offered prices on the purchases from electricity markets, 

a sensitivity analysis over risk factor is performed. The numerical results demonstrate that with the application of the 

proposed model, the aggregator can supply EVs with lower purchases from markets. 
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Abbreviation 

EV Electric vehicle. 

VaR Value-at-risk. 

CVaR Conditional VaR . 

NOMENCLATURE 

f  
Index of forward contracts, running from 

1 to FN . 

j  
Index of blocks in the forward contracting 

curves, running from 1 to JN . 

dschchi /  

Index of blocks in the charge/discharge 

price-quota curves, running from 1 to 

dschchiN / . 

t
 

Index of time periods, running from 1 to 

TN . 

  

Index of scenarios, running from 1 to N  

 

F
tC  

Cost of purchasing from forward contracts 

in period t ($). 
 

P
tC ,  Total cost of trading in the pool. 

P
tE   

The energy traded in scenario  and 

period t. 

dschchR
tE /_
  

Energy supplied/bought by/from the 

aggregator in period t (MWh) in scenario 

ω. 

F
fP  

Power contracted from forward contract f 

(MW). 

F
fjP

 

Power contracted from block j of forward  

contracting curve of forward contract f 

(MW). 

dschchR
i

/_  

Selling/buying price associated with block 

i of the charge/discharge price-quota 

curve ($/MWh), Limited to dschchR
i

/_
1 . 

  
Auxiliary variable used to calculate the 

CVaR ($). 


 

Auxiliary variable related to scenario ω 

used to calculate the CVaR ($). 

dschch
dschichv /

/  

Binary variable. 1 if the selling/buying 

price offered by the aggregator to the EVs 

belongs to block i of the price quota 

curve, being 0 otherwise. 

P
t  

Electricity pool price in scenario  and 

period t. 

td
 

Duration of period t (h). 

dschchR
tiE

/_
  

Energy associated with block i of the 

charge/discharge price-quota curve in 

period t and scenario ω (MWh). 

F
fjP  

Upper limit of the power contracted from 

block j of the forward contracting curve of 
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forward contract f (MW). 

dschchR
i

/_
min,

 

Minimum selling/buying prices associated 

with block i of the price-quota curve of 

EVs ($/MWh). 

F
fj  

Price of block j of the forward contracting 

curve of forward contract f ($/MWh). 

  
Confidence level used in the calculation 

of the CVaR. 

  

Weighting factor used to materialize the 

tradeoff between expected profit and 

CVaR. 

prob  Probability of occurrence of scenario ω. 

tF  
Set of forward contracts available in 

period t. 

  Set of scenarios. 

1. INTRODUCTION 

An electric vehicle (EV) aggregator participates in 

electricity market to supply EVs’ charging needs. 

During a medium-term planning time period, an 

aggregator may meet the unknown pool prices and EVs 

charge/discharge behaviors. Because these uncertain 

parameters can affect the aggregator participation in 

electricity market [1], they should be taken into account 

in the aggregator’s decision making process. The 

medium-term decision making of the aggregator has 

been also formulated in some literatures to include the 

optimal involvement in the future market through 

forward contracts and pool markets [2]-[3] as well as the 

optimal setting of charge/discharge prices to the EV 

owners to maximize the expected profit from electricity 

dealing in different risk level of profit variation [4]. In 

[5], joint day-ahead scheduling and real-time regulations 

have been considered to investigate the uncertainties 

from electricity price and household device usages. 

Authors in [6] have proposed a new model for 

participation of electric vehicle parking lots in both 

energy and reserve markets in order to compensate 

renewable power production and load uncertainties. An 

economic framework for scheduling responsive loads is 

proposed in [7] to manage the energy and reserve of a 

microgrid with the presence of renewable energy 

resources and EVs. A framework with considering 

optimal charging of EVs which allows a retailer to have 

different alternatives for electricity procurement based 

on bilateral contracts is proposed in [8]. Authors of [9] 

have proposed different algorithms to find optimal 

charging rates of EVs inspecting maximum aggregator’s 

profit. Reference [10] has provided a stochastic model 

for optimal decision making of an aggregator while [11] 

has done the same task using forecasting techniques for 

EVs’ mobility such as availability and the desired 

energy during the scheduling period. In [12], it has been 

assumed that the aggregator suggests charge bids to 

day-ahead market with the objective of minimizing 

charging costs while satisfying the plug-in EVs’ flexible 

demand. However, vehicle-to-grid mode has not been 

considered and it has been assumed that the aggregator 

could influence market prices in opposite to what is 

generally expressed in the literatures. EV aggregators’ 

participation in energy and ancillary services markets 

has been analyzed in [13]. A scenario-based stochastic 

framework for obtaining optimal bidding and offering of 

a retailer in the presence of market price uncertainty 

with considering risk aversion and risk taking decisions 

is discussed in [16]. Plug-in EV load-serving entity with 

deterministic behavior of vehicles has been taken into 

account in the mentioned work. A methodology to 

maximize aggregator’s profits in day-ahead and 

balancing markets with considering risk aversion, has 

been studied in [17]. Coordination of renewable 

energies and energy storage in energy and balancing 

markets has also been examined in [18] to show its 

benefits on the risk analysis. A stochastic optimization 

model for optimal bidding strategies of EV aggregators 

in day-ahead energy and ancillary services markets with 

variable wind energy has been assessed in [19]. 

Participation of energy producers in real-time and day-

ahead electricity markets has been studied in [20] and 

[21], respectively. A stochastic model for optimal 

management of responsive loads in energy and reserve 

market with considering CVaR is investigated in [23].  

In [24], a game model has been presented to deal with 

the interactions between utilities and parking lots. The 

EV aggregators can participate in the spinning reserve 

market to control the variations of renewable power and 

load forecasting error. In this regard, the distribution 

system operator can control a fleet of EVs by charging 

signals in order to provide reserve to compensate the 

intermittency of renewable generation [25]. In [26], a 

stochastic programming approach is provided for a 

retailer who participates in a mixed bilateral-pool 

market. So, a two-stage operational framework is 

presented where the retailer and aggregator do their 

medium-term planning that is made one month prior to 

real-time market. A multi-objective stochastic 

framework for participation in the energy and up/down 

spinning reserve markets to schedule conventional 

generation units, bulk energy storages, and DR 

resources along with wind integration is proposed in 

[27]. A two-stage stochastic programming model for 

joint day-ahead energy and reserve scheduling model to 

assess the uncertainty in wind power generation is 
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developed in [27], without considering forward 

contracts. The problem of scheduling the plug-in 

electric vehicle aggregators in electricity market 

considering the uncertainties of market prices, EVs 

availabilities, and status of being called by the 

independent system operator in the reserve market is 

discussed in [29]. In [30], a stochastic approach has 

been represented for an EV aggregator offering 

regulation services to the electricity market. To this end, 

a predefined contract has also been assumed to be 

signed between the aggregator and the market operator 

which determines the regulation capacity to be provided 

by the aggregator at a predetermined price. An 

algorithm for day-ahead scheduling and a dynamic 

dispatch algorithm for distributing purchased energy to 

plug-in EVs has been presented in [31]. In this 

algorithm, electricity prices and Plug-in EV charging 

behavior have been considered deterministic. A 

mathematical programming with equilibrium constraints 

has been proposed in [32] and [33] to optimize the 

aggregator’s decisions in energy markets. Authors in 

[32] have endogenously determined the profit-optimal 

price level subject to the cost minimizing charging 

schedule of the EV owners, but not the discharging 

process. A stochastic mathematical program with 

equilibrium constraints model for making optimal 

bidding strategies for wind power producers with 

considering risk management is investigated in [34].  

In this paper, the problem of optimal decision making 

of an EV aggregator in a medium-term horizon under 

uncertain conditions is investigated. To this end, the 

aggregator is envisaged to maximize its expected profit 

by trading energy in the future and pool market as well 

as offering appropriate charge/discharge prices to the 

EV owners. However, in this context, the aggregator 

may face varying pool prices and stochastic EV’s 

behavior which can negatively affect the aggregator’s 

profit. Thus to assess the influence of the indicated 

uncertainties on the expected profit of the EV 

aggregator, risk management approach is used. So the 

main highlights of this paper are as bellow: 

• Proposing a two stage scenario based optimization 

model for optimal bidding strategy of an EV 

aggregator in a medium-term horizon. 

• Utilizing CVaR as a risk measurement index in order 

to evaluate EV aggregator’s financial risks and to 

inspect the influence of risk aversion in decision 

making process. 

• Investigating the uncertainties due to pool prices and 

the forecast errors of EVs charge/discharge behavior 

as a set of probabilistic time-varying power using a 

scenario-based approach. 

• Investigation the effects of EVs charge/discharge 

process on the energy procured by an aggregator for 

the EVs fleet by participating in the Future and pool 

markets. 

The remaining sections are outlined as follows: 

section 2 describes decision making framework and 

market structure. Section 3 presents the problem 

formulation of decision making of an EV aggregator as 

a two-stage stochastic programming model and section 

4 provides numerical results. Finally, relevant 

conclusions are drawn in section 5. 

2. DECISION MAKING FRAMEWORK AND 

MARKET STRUCTURE 

2.1. Model description  

In an electricity market, decision-making of an EV 

aggregator can be discussed similar to that of a retailer. 

This agent is supposed to determine its optimal 

participation in the future market to control pool price 

volatility and EVs’ stochastic behavior. Moreover, from 

an aggregator point of view, the future market 

contracting and the designation of charge/discharge 

prices offered to the EVs are medium-term decisions, 

while transactions in the pool market and EVs’ 

participation level in charge/discharge services are 

decided in the short-term ones. The aggregator makes 

medium-term decisions at the beginning of the planning 

horizon while it makes short-time decisions during it. 

So, the difference between these groups of decision 

making is at the moment of their occurring. In this 

regard, two kinds of decisions can be introduced: here-

and-now and wait-and-see decisions. Considering a two-

stage stochastic programming model, here-and-now 

decisions are such decisions that are made in a 

deterministic way and without considering uncertainty. 

In a medium-term horizon, these decisions correspond 

to the forward contracting and charge/discharge prices 

determination. While, the decisions referred to as wait-

and-see are made in an uncertain environment. 

Typically, the pool trading is supposed as a wait-and-see 

decision in medium-term. The problem of aggregator’s 

participation in the future and pool markets in order to 

supply EVs demand with considering the effects of EVs 

reaction to the charge/discharge prices such that it 

maximizes the expected profit of the EV aggregator is 

proposed here. To this aim, the following assumptions 

are taken in to account: 

• The aggregator provides the required energy to the 
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EV owners in three ways: forward contracts, 

electricity pool market, and buying energy from EVs 

when they discharge. 

• EV owners cannot buy energy from the electricity 

pool directly and they only procure their required 

energy from the aggregator. 

• EV owners can discharge their EVs and sell the 

stored energy to the aggregator. 

• The aggregator does not sell energy to the pool and 

it can only purchase energy from pool market. 

2.2. Future Market Modeling 

Typically, an aggregator participates in the future 

market with forward contracts to supply a part of the 

required energy for EV owners. In this market, the 

aggregator buys energy at a fixed price before selling to 

the EV owners. The aggregator takes prices from 

forward contracts based on contracting curve depicted in 

Fig. 1. 

€/(kWh)

F
f 3

F
f 2

F
f 1

F
fP 2

F
fP 1

F
fP 3

F
fP 1 



2

1j

F
f j

P 


3

1j

F
f j

P
F
fP (kWh)

 
Fig. 1. Forward contracting curve 

Equation (1) states the cost of purchasing energy 

from forward contracts in each time period t that 

depends on the contracted power 
F
fjP , energy price in 

each block of the forward contracting curve 
F
fj , and td

as the duration of period t. Constraint (2) expresses that 

the power purchased from each block of the forward 

contracting curve is positive and is limited within a 

bound. Finally, relation (3) describes the power 

purchased from each contract that is the sum of the 

powers bought from each block. 

tdPC

tF

t
F
fj

F
fj

F
t  

 

;

f

N

1j

J



 

(1) 

jfPP F
fj

F
fj  ,,0

 (2) 





JN

j

F
jf

F
f tPP

1

, ;

 

(3) 

2.3. Electricity pool market modeling 

Here, it is supposed that the aggregator can purchase 

energy in the electricity pool in order to meet the energy 

for EV owners; However, it is assumed not to sell back 

energy to the pool market. The cost of the energy traded 

in the pool is represented as follows [10]: 
P

, t

P P

t tC E    (4) 

Where, 
P
tC , ,

P
tE   and 

P
t are the total cost of 

trading in the pool, the energy traded and electricity 

pool price in scenario   and period t, respectively. 

2.4. Offering charge/Discharge prices 

EVs are free to react to the price signals. Here, it is 

assumed that EVs behave elastically with respect to the 

charging/discharging price offered by the aggregator. 

The elastic behavior of the EV owners means that if the 

selling (buying) price is too high (low), EVs will choose 

a rival aggregator for their electricity supply 

(discharge). The relationship between the offered price 

and a fleet of EVs supplied by the aggregator can be 

modeled through a stepwise price-quota curve. A price-

quota curve determines the amount of electricity 

provided (purchased) by (from) the aggregator and the 

associated price. These curves are estimated by the 

aggregator before solving the decision-making problem, 

and therefore, they are input data to the problem under 

consideration [35]. 

Here, the aggregator’s bidding strategy for 

charging/discharging processes are modeled with price-

quota curves. The buying and selling prices are bounded 

between their minimum and maximum limitations (

dschchR
i

/_
min, and 

dschchR
i

/_
max, ($/MWh)) and each block i 

illustrates the percentage of EVs participation that 

transact energy with their aggregator. As Fig. 2 shows, 

when the offered charging price increases to 
chR

i
_

max, , the 

energy provided for charge will decrease that shows the 

EVs’ demand decrement. However, when charging 

price approaches to chR
i

_
min, , EVs’ demand augments as 

well. Opposite procedure is observed for discharge 

process. As discharge prices increases, EV owners are 

more willing to discharge their vehicles and obtain more 

advantage. The relationship between supplied/purchased 

power by the aggregator to/from EVs and the related 

prices, are given as a curve with these relations: 

 

  




,
1

__ tvEE
chi

ch

N

i

ch

i

chR

ti

chR

ti
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1

_
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Where,
chR

i
_ and 

dschR
i

_ are the charge and 

discharge prices offered to EV owners related to the 

block i of their price quota curves, respectively. 

dscchchR
tiE /_

  indicates the transacted energy between 

EVs and aggregator in period t and scenario ω (MWh). 

dschchR
tiE /_

 shows the energy associated with block i of 

the foresaid curves in period t and scenario ω (MWh). 

Equation (7) and (8) declare that both charge/discharge 

prices are limited between the minimum and maximum 

bounds of the blocks. Equation (9) and (10) guarantee 

that only one block is selected. Each block shows a 

particular offering charge or discharge price step. The 

offered charge/discharge prices depict the selected 

blocks. It should be noted that the aggregator can 

propose only one charge or discharge price to the 

owners. 
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Fig. 2. Price quota curve for EVs reaction to the offered prices 

 

2.5. Scenario Tree of decision making framework 

The decision-making problem for aggregator 

participation in the future and pool market is outlined as 

follows: 

1) Determining forward contract and selling 

price: 

At the beginning of the planning horizon, the aggregator 

decides the forward contracts to be used during the 

planning horizon and the selling price offered to the 

clients. These decisions are made under uncertainty on 

the pool prices and the EVs demands. 

2) Trading in the pool by the aggregator: 

After fixing the forward contract and the selling prices, 

the aggregator decides the amount of energy that should 

be purchased in the pool to supply the EVs demands, in 

each period of the planning horizon.  

In fact, when forward contracting and price-setting 

decisions are made, the aggregator encounters the 

sources of uncertainty including: future pool prices and 

EVs demands. Here, it is assumed that the aggregator 

acts as a price-taker and the pool prices are independent 

of the aggregator’s actions. Similarly, EVs demands are 

also unknown to the aggregator. So, a stochastic 

programming approach is proposed to solve the 

uncertainty on pool prices and EVs demands. In this 

problem, uncertain pool prices and client demands are 

modeled with a set of scenarios. Each scenario 

comprises a vector of pool prices and EVs demands as 

follows:         

  TtEEScenario dschR
ti

chR
ti  __P

t ,,   

When the aggregator purchases energy from future 

market and wants to determine charge/discharge prices, 

EVs behavior and pool prices, as unknown sources to 

the aggregator, are represented by a set of scenarios. Let 

  introduce a group of scenarios and N state the 

number of scenarios in  . Each scenario   includes a 

vector of pool prices, EVs charge/discharge required 

energy and occurrence probability shown with prob . 

Note that the sum of all probabilities in all scenarios is 

1. This set of scenarios is arranged in a two-stage 

scenario tree as shown in  

Fig. 3. The purchases from future market and the 

charge/discharge prices offered to the EVs are both 

decided at the first stage while buying in the pool 

market is determined at the second stage. Each scenario 

ω in the tree represents the realizations of the stochastic 

processes involved in the vector of pool prices and EVs 

demands. The probability of occurrence associated with 

each scenario is the product of the probabilities 

associated with each vector. 

3. PROBLEM FORMULATION 

The aggregator tries to maximize its profit by selling 

electric energy to the EV owners. To this end, it buys 

energy in both pool and future market and also it can 

purchase energy from EVs when they discharge. The 

price of the energy in the pool in each period t is 

assumed to be unknown and is introduced as a random 
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variable and is stated with a category of scenarios. The 

aggregator also participates in the futures market and 

buys energy in different forward contracts, f = 1, 2, … 

that are defined by a special price, F
f . The profit is 

then defined as the revenue from selling electricity to 

the EV owners minus the purchase costs of forward 

contracts, the electricity pool and discharge of EVs.  
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Fig. 3. Sequence of aggregator decision making problem. 

A two-stage stochastic programming problem is 

formulated here, with regard to the mentioned objective 

taking into account the CVaR: 
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Where  ,   and  are the confidence level, risk 

coefficient and auxiliary variable, respectively. The first 

term is the main profit objective and the second one is 

CVaR. The tradeoff between expected profit and CVaR 

is represented by  . Constraint Eq. (12) states the 

margin for the purchased power from block j of the 

forward contracts. Constraints of Eqs. (13) - (16) define 

the blocks of the charge/discharge price curves. 

Constraint (17) describes the energy balance in each 

period and scenario. Constraint of Eq. (18) presents 

CVaR and finally, constraints of Eqs. (19) - (21) define 

the variables. 

4. NUMERICAL RESULTS 

The mentioned formulation is tested with the electricity 

market data obtained from [2]. Here, it is supposed to 

have a parking lot with 100 charging plugs and the 

nominal capacity of each EV is 7.4 kWh. It is supposed 

that about fifty percentages of these EVs will connect to 

the network. The characteristics of the forward contracts 

with six bidding-steps are provided in Table 1. EVs 

charge/discharge energy and pool prices are modelled 

using a set of scenarios defined over a normal 

distribution with forecasted mean as shown in Fig. 4. 

The EVs loads are obtained from [33] and the range of 

pool prices and forward payments are also extracted 

from [2]. In order to model the forecast inaccuracies 

stem from the uncertain nature of pool prices and EVs 

charge/discharge demand, normal Probability 

Distribution Functions (PDF) is used. In this case, the 

mean values are equivalent to the forecasted values of 

prices and EVs demand. Then the PDFs are divided into 

five discrete intervals with different probability levels as 
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illustrated in Fig. 4. The forecasted errors correspond to 

the mentioned uncertain resources are given by intervals 

equal to the standard deviation. The forecast error 

probabilities are normalized and filled out over the 

range of between 0 and 1. The generated scenarios are 

combined all-against-all, resulting in a vector of 

independent random variables but the size of the tree 

grows exponentially. Therefore, an effective scenario 

reduction algorithm proposed in [35] is applied. The 

generated scenarios for each variable are reduced by 

Roulette Wheel Mechanism and then the reduced 

scenarios associated with the variables are combined 

through a scenario tree. The confidence level α is 0.95 

and the problem is solved by CPLEX 10.2 solver [36] 

using GAMS software [37]. 

EVs’ responses to charge/discharge prices are 

presented by price quota curves shown in Fig. 5 and Fig. 

6, respectively. The range of prices associated with the 

charge/discharge price quota curves are extracted from 

[2]. 

mean  2

0.383

0.24170.2417 0.06680.0668

2 
 

Fig. 4. Five segment approximation of normal distribution 

Table 1.  Forward contract data 
 

Contract 

# 

F
f  (€/kWh) 

F
fP  

(kWh) 

Contract 

1 

0.0650 15 

0.0630 10 

0.0650 15 

0.0630 10 

0.0650 15 

0.0630 10 

Contract 

2 

0.0655 20 

0.0630 10 

0.0655 20 

0.0630 10 

0.0655 20 

0.0655 20 

The two curves depict that EVs’ charge/discharge 

behaviours are variable because of changes in the 

charge/discharge prices. As can be seen from Fig. 5, 

within a specific price limitation, majority of EVs 

contribute in charge process however for higher prices 

the aggregator may lose its demand. Likewise, from Fig. 

6, it is observed that if discharge price increases, more 

EVs will participate in discharge service, so the 

aggregator can buy energy from EV owners with lower 

prices instead of purchases from electricity market with 

higher prices and in this case, it can improve its profit. 

As described before, an aggregator requests to 

investigate the purchases from forward contracting, pool 

market and discharge of EVs, in order to maximize its 

expected profit while satisfying EVs’ demand.  

In order to inspect the effects of uncertain parameters 

on the expected profit of the aggregator, risk control is 

considered as an important factor. In this regard, Fig. 7 

illustrates the variation of expected profit against CVaR 

for different values of β. As expected, the highest 

expected profit is achieved for β=0 that shows the 

highest risk. The expected profit for β=15 decreases 

12.6% to obtain an increment of 21.35% in CVaR. The 

frontier represents the expected profit versus CVaR for 

different values of β and shows that high values of 

CVaR are associated with lower expected profit that 

result from different EVs reaction to charge/discharge 

prices. 

 
Fig. 5. Charge price quota curve 

 

 
Fig. 6. Discharge Price quota curve 

Table 2 represents EVs participation in 

charge/discharge processes. For more risk aversion 

conditions, EVs’ demand reduces with increasing β. So 

the aggregator tries to buy energy from future market 
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with fixed prices. Since the future prices are on average 

more expensive than pool prices, as Fig. 7 shows, the 

aggregator’s expected profit decreases and consequently 

it tries to compensate the losses of its income. 

Therefore, it sells energy to EVs with higher charge 

prices as β augments. The results show that with 

increasing β from 0 to 0.5, EVs participation in 

discharge mode increases to 32%. Also, further increase 

of β (up to 1), results in an increase in the charge price 

which in turn affects the contribution of EVs owners’ 

and the aggregator’s benefit. By growing β up to 5, EVs 

participation in charge process declines while the 

opposite happens in discharge mode. In fact, the 

aggregator investigates to buy more energy from EVs 

with lower prices than those offered in the market. In 

this regard, it saves its payments. For β=10 and 15, it is 

observed that a few owners ask the aggregator for 

charge services (about 18% and 15%, respectively) and 

the majority of customers might find another aggregator 

with better offers. It is also observed from Table 1 and 

Table 2 that discharge prices (
dschR

i
_

) are lower than 

the forward contracting prices (
F
f

). In other words, it 

can be seen from Table 1 and Table 2 that the 

aggregator pays to EV owners with lower discharge 

prices than the forward ones. So, it can be advantageous 

for it to buy energy from EV owners in addition to 

forward contracts. As we know, generally, with 

increasing β, the aggregator tries to participate in the 

future market to buy electricity and as the result to 

control the volatility of pool prices. In fact, it tries to 

control risk due to the indeterminacy of pool market by 

participating in the future market. Here, with 

considering discharging mode for EVs, by considering 

more risk aversion and increasing CVaR, the expected 

profit decreases. So, the aggregator tries to propose 

higher charge/discharge prices to the EVs to avoid 

substantial decrement of its expected profit. 

 Moreover, as EVs demand decreases, the aggregator 

requires buying less energy in the future and pool 

markets as illustrated in Fig. 8 and Fig. 9, respectively. 

The reason is that the aggregator tries to increase the 

charging prices to compensate its expected profit. Since 

the aggregator lost its customers due to high offered 

charging prices, it requires buying less energy from both 

forward and pool markets. Also it pays the EV owners 

for their discharge with lower prices than the price of 

forward contracts. In this case, its expected profit would 

not decrease severely (see Fig. 7). Moreover, it should 

be mentioned that since the aggregator can participate in 

the pool market during the day, it does not require 

buying high amount of energy from this market. In fact, 

if the number of EVs asking for charge services exceeds 

(compared to what is estimated) or less EVs are 

accessible for discharge mode, then the aggregator can 

attend pool market and purchase its required energy in 

order to compensate the extra energy that EVs require. 

 
Fig. 7. Variation of Expected Profit versus CVaR in different β 

Table 2. EVs participation in charge/discharge process and the offered 

charge/discharge prices. 

Discharge 

participation 

dschR
i

_
(€/kWh) 

Charge 

participation 

chR
i

_  

(€/kWh) 
β 

30% 0.036 24% 0.079 0 

32% 0.038 24% 0.079 0.5 

32% 0.039 22% 0.080 1 

33% 0.039 20% 0.081 5 

33% 0.039 18% 0.082 10 

33% 0.039 15% 0.084 15 

To explain generally, at the beginning of the planning 

horizon, the aggregator decides to choose the forward 

contracts as Fig. 8 shows and it gives 

charging/discharging price signal offered to the EV 

owners as provided in Table 2. They are both 

considered as here-and-now decisions. At the first stage, 

these decisions were made under uncertainty of pool 

prices and EVs demands. After fixing the forward 

contract and the selling/ buying prices, the aggregator 

decides the amount of energy that should be purchased 

in the pool to supply EVs demands, in each period of 

the planning horizon. The amount of energy that should 

be purchased from pool market in different βs is 

illustrated in Fig. 9. Pool prices and client demands refer 

to wait-and-see decisions and are made after uncertainty 

is revealed. 

 
Fig. 8. Procured power from forward contracts versus β. 
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The obtained revenues associated with charge process 

accompanied with the costs of discharge, forward and 

pool purchases for different βs are provided in Table 3. 

With increasing β, as it was mentioned in Table 2, the 

participation of EVs in charge process is decreased. 

Accordingly, the expected revenue is reduced from 

128.792€ for β=0 to 85.589€ for β=15. This revenue 

mitigation makes the aggregator sell the electricity to 

EVs with higher charge prices as it was given in Table 

2. With increasing β, the aggregator offers higher 

discharge prices and consequently, its payment due to 

discharge process increases. However, as the average of 

discharge prices offered to the owners is not higher than 

charge prices and also lower number of EVs usually 

participate in discharge mode compared with charge 

one, the payments due to discharge are very lower than 

charge revenue. In addition, with increasing β, the 

payments in future and pool markets decrease about two 

times. It is because of high charge price that leads to 

loosing EVs demand. Moreover, the owners are 

motivated to sell back the energy of their batteries 

because of high discharge prices. To show the 

possibility of experiencing losses, Table 4 illustrates the 

simulation results for β=15 in all scenarios with regard 

to aggregator’s profit. As it is observed, in scenarios 14 

and 15, the profit values are negative which mentions 

financial losses to the aggregator. This is very probable 

in β=15 as the aggregator increases its proposed prices 

to the owners and consequently, it loses its revenue 

because of losing its customers due to high offered 

charge prices and high discharge payments. Fig. 10 

illustrates the expected profit against the standard 

deviation of the profit in different βs. It should be noted   

that the decisions made by the aggregator have an 

important effect on the variability of the profit. If the 

aggregator considers EVs involvement in 

Table 3. Sensitivity analysis of EVs reaction to discharge process. 
 

Base Case 

β 
Future 

purchase 

Pool 

purchase 

chR
i

_  

charge 

participation 

(%) 

dschR
i

_  

discharge 

participation 

(%) 

 

0 34.650 617.870 0.079 24% 0.036 30% 

0.5 34.320 613.736 0.079 24% 0.038 32% 

1 31.020 557.081 0.080 22% 0.039 32% 

5 27.555 498.358 0.081 20% 0.039 33% 

10 24.255 441.702 0.082 18% 0.039 33% 

15 19.305 356.718 0.084 15% 0.039 33% 

Case 1 10% (decrease in EVs participation) 

β 
Future 

purchase 

Pool 

purchase 

chR
i

_  

charge 

participation 

(%) 

dschR
i

_
 

discharge 

participation 

(%) 

 

0 35.640 630.270 0.079 24% 0.036 27% 

0.5 35.376 626.963 0.079 24% 0.038 28.8% 

1 32.076 570.307 0.080 22% 0.038 28.8% 

5 25.344 455.342 0.082 18% 0.039 29.7% 

10 20.394 370.359 0.084 15% 0.039 29.7% 

15 20.394 370.359 0.084 15% 0.039 29.7% 

Case 2 (10% increase in EVs participation) 

β 
Future 

purchase 

Pool 

purchase 

chR
i

_
 

charge 

participation 

(%) 

dschR
i

_
 

discharge 

participation 

(%) 

 

0 34.155 611.670 0.079 24% 0.036 33% 

0.5 33.792 607.123 0.079 24% 0.038 35.2% 

1 30.492 550.467 0.080 22% 0.038 35.2% 

5 27.010 491.538 0.081 20% 0.039 36.3% 

10 23.710 434.882 0.082 18% 0.039 36.3% 

15 18.760 349.898 0.084 15% 0.039 36.3% 
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charge/discharge mode instead of more purchases from 

forward contracts to increase its revenue, the volatility 

of its profit occurs much more in higher βs than that if it 

depends more on the future market which occurs in 

lower βs. In this context, as Fig. 10 shows, with 

increasing β, the profit standard deviation grows up. 

That is because the aggregator considers EVs responses 

to the charge/discharge prices. So, the unpredictability 

of EVs behaviour may influence the aggregator’s 

expected profit and the decisions determined by it for 

buying from forward contracts. Thus, inspecting the 

uncertain nature of EVs behaviour for decision making 

in the forward contracts is a reason of profit volatility. 

 
Fig. 9.Variation of purchased energy in pool market versus β 

 

Fig. 10. Expected profit against profit standard deviation in different 
βs. 

Sensitivity analysis is carried out to investigate the 

effect of EVs discharging on the forward and pool 

purchases. Table 3 shows the result of future and pool 

procurements, the charge/discharge prices offered to EV 

owners and their participation percentage in different β 

values. The reaction of EVs to three different cases are 

considered including base case that was shown in Fig. 5 

and Fig. 6, case 1 which denotes 10% decrease in EVs 

participation compared to the base case, and case 2 

which shows 10% increase in EVs participation.  

It is observed that with increasing β, the aggregator 

purchased lower amount of electricity from future and 

pool markets and it bought energy from EV owners. 

Moreover, in all three cases, it offers charge prices to 

the EV owners not more than 0.084 (€/kWh), else it 

may lose its customers. Also, in case 2 (with 10% 

increment in EVs participation), in β=15, about 36.3% 

of EVs discharged their vehicles and the aggregator 

bought the lower amount of power from future market. 

Thereafter, the aggregator tried to buy more energy 

from EVs instead of future and pool markets. 

Table 4. The Expected revenues ($) and costs ($) of the aggregator for 

different βs. 
 

 Table 5. Profit in all scenarios in β=15. 
 

Scenario Profit (€) 

51  
 

301.02 303.18 305.89 298.86 296.45 

106  
 

297.46 298.86 300.49 296.08 294.74 

1511  
 

109.03 294.52 295.07 -74.19 -156.37 

2016  
 

304.58 307.51 311.31 301.64 298.16 

2521  
 

308.14 311.84 316.74 304.43 299.88 

5. CONCLUSIONS 
This paper proposed a two-stage stochastic 

programming model for effective participation of an EV 

aggregator in the future and pool markets. The optimal 

aggregator’s decision making process was considered as 

an optimization problem to specify the forward contract 

purchases and to offer optimal charge/discharge prices 

to EV owners on a medium-term planning horizon in the  

firs stage. In this way, a number of prominent 

uncertainties such as pool prices and EVs behavior were 

also investigated in the second stage. The risk aversion 

of the aggregator was modeled by CVaR of the profit. 

The effects of EVs response to charge/discharge prices 

on the forward contracting and pool procurements were 

also inquired. It was shown that the aggregator tried to 

buy from EV owners instead of buying from forward 

contracts to avoid substantial decrement of its expected 

profit. Moreover, a sensitivity analysis was carried out 

to see the effects of EVs discharge mode on the forward 

and pool purchases. 

The results revealed that with increasing the EVs 

contribution in discharge process, less energy is needed 

to be purchased from forward market. Also, if the 

number of EVs augments, the aggregator should buy 

more energy from forward and pool market in order to 
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0 128.792 6.509 52.391 41.369 

0.5 128.792 7.328 51.892 41.069 

1 119.553 7.328 46.902 37.246 

5 110.043 7.756 41.663 33.273 

10 100.262 7.756 36.674 29.450 

15 85.589 7.756 29.189 23.716 
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supply EVs demand, because the obtained energy from 

discharging EVs might not be enough to supply the EVs 

requirements. 
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