تعداد نشریات | 26 |
تعداد شمارهها | 340 |
تعداد مقالات | 2,929 |
تعداد مشاهده مقاله | 4,396,256 |
تعداد دریافت فایل اصل مقاله | 2,989,832 |
Adaptive Observer-Based Decentralized Scheme for Robust Nonlinear Power Flow Control Using HPFC | ||
Journal of Operation and Automation in Power Engineering | ||
مقاله 9، دوره 5، شماره 2، اسفند 2017، صفحه 191-203 اصل مقاله (1.55 M) | ||
نوع مقاله: Research paper | ||
شناسه دیجیتال (DOI): 10.22098/joape.2017.3007.1251 | ||
نویسندگان | ||
A. Mohammadpour Shotorbani* 1؛ S. Ghassem Zadeh1؛ B. Mohammadi-ivatloo1؛ S. H. Hosseini1؛ L. Wang2 | ||
1Department of Electrical and Computer Engineering, University of Tabriz, Tabriz,Iran | ||
2School of Engineering, University of British Columbia | ||
چکیده | ||
This paper investigates the robust decentralized nonlinear control of power flow in a power system using a new configuration of UPFC. This structure comprises two shunt converters and one series capacitor called as hybrid power flow controller (HPFC). A controller is designed via control Lyapunov function (CLF) and adaptive observer to surmount the problems of stability such as tracking desired references, robustness against uncertainties, rejecting the disturbances, and remote data estimation. The suggested control scheme is decentralized using adaptive observer to estimate the non-local varying parameters of the system. Stability of the closed loop system is proved mathematically using Lyapunov stability theorem. Performance of the proposed finite-time controller (FT-C) is compared to another suggested exponentially convergent nonlinear controller (ECN-C) and a conventional PI controller (PI-C). Settling time of the state variables are diminished to a known little time by FT-C in comparison with ECN-C and PI-C. Simulation results are given to validate the proposed controllers. Effects of model uncertainties such as parameter variation in the transmission line and the converters are studied and properly compensated by the proposed controllers. The impact of the control gain and the communication time-delay is shown using the Bode diagram analysis. | ||
کلیدواژهها | ||
Decentralized Control Lyapunov function؛ flexible AC transmission systems؛ Hybrid power flow controller؛ nonlinear control systems؛ robust control | ||
مراجع | ||
[1] S. Kamel, F. Juradoa, and J. A. P. Lopes, “Comparison of various UPFC models for power flow control” Electr. Power Syst. Res., vol. 121, pp. 243-251, 2015. [2] G. S. Ilango, C. Nagamani, A. V. S. S. R. Sai, and D. Aravindan, “Control algorithms for control of real and reactive power flows and power oscillation damping using UPFC” Electr. Power Syst. Res., vol. 79, pp. 595-605, 2009. [3] L. Gyugyi, “A unified power flow control concept for flexible AC transmission systems” IEEE Proc. C Gener. Transm. Distrib., vol. 139, no. 4, pp. 323-331, 1992. [4] S. A. Al-Mawsawi, “Comparing and evaluating the voltage regulation of a UPFC and STATCOM” Int. J. Electr. Power Energy Syst., vol. 25, pp. 735-740, 2003. [5] E. Gholipour and S. Saadate, “Improving of transient stability of power systems using UPFC” IEEE Trans. Power Delivery, vol. 20, no. 2, pp. 1677-1682, 2005. [6] A. M. Shotorbani, A. Ajami, M. P. Aghababa, and S. H. Hosseini, “Direct Lyapunov theory-based method for power oscillation damping by robust finite-time control of unified power flow controller” IET Gener. Transm. Distrib., vol. 7, pp. 691-699, 2013. [7] J. Guo, M. L. Crow, and J. Sarangapani, “An improved UPFC control for oscillation damping” IEEE Trans. Power Syst., vol. 14, pp. 288-296, 2009. [8] N. Bigdeli, E. Ghanbaryan, and K. Afshar, “Low frequency oscillations suppression via CPSO based damping controller” J. Oper. Autom. Power Eng., vol. 1, pp. 22-32, 2013. [9] M. R. Esmaili, A. Khodabakhshian, and M. Bornapour, “A new coordinated design of UPFC controller and PSS for improvment of power system stability using CPCE algorithm” Proc. IEEE Electr. Power Energy Conf., Ottawa, pp. 1-6, 2016. [10] L. Wang, H.W. Li, and C.T. Wu, “Stability analysis of an integrated offshore wind and seashore wave farm fed to a power grid using a unified power flow controller” IEEE Trans. Power Syst., vol. 28, pp. 2211-2221, 2013. [11] W.M. Lin, K.H. Lu, and T.C. Ou, “Design of a novel intelligent damping controller for unified power flow controller in power system connected offshore power applications” IET Gener. Transm. Distrib., vol. 9, pp. 1708-1717, 2015. [12] A. Mohanty, S. Patra, and P. K. Ray, “Robust fuzzy-sliding mode based UPFC controller for transient stability analysis in autonomous winddiesel-PV hybrid system” IET Gener. Transm. Distrib., vol. 10, pp. 1248-1257, 2016. [13] M. Firouzi, G. B. Gharehpetian, and B. Mozafari, “Power-flow control and short-circuit current limitation of wind farms using unified interphase power controller” IEEE Trans. Power Delivery, vol. 32, pp. 32-71, 2017. [14] M. A. Sayed and T. Takeshita, “Line loss minimization in isolated substations and multiple loop distribution systems using the UPFC” IEEE Trans. Power Electron., vol. 29, pp. 5813-5822, 2014. [15] A. R. Ghahnavieh, M. Fotuhi-Firuzabad, and M. Othman, “Optimal unified power flow controller application to enhance total transfer capability” IET Gener. Transm. Distrib., vol. 9, pp. 358-368, 2015. [16] J. Z. Bebic, P. W. Lehn, and M. R. Iravani, “The hybrid power flow controller a new concept for flexible AC transmission” Proc. IEEE Power Eng. Soc. Gen. Meeting, pp. 1-6, 2006. [17] A. K. Sadigh, M. T. Hagh, and M. Sabahi, “Unified power flow controller based on two shunt converters and a series capacitor” Electr. Power Syst. Res., vol. 80, pp. 1511-1519, 2010 [18] A. Shukla, A. Ghosh, and A. Joshi, “Static shunt and series compensation of an SMIB system using flying capacitor multilevel inverter, ” IEEE Trans. Power Delivery, vol. 20, pp. 2613-2622, 2005. [19] D. Soto and T. C. Green, “A comparison of high-power converter topologies for the implementation of FACTS controllers, ” IEEE Trans. Indus. Electron., vol. 49, pp. 1072-1080, 2002. [20] S. Yang, D. Gunasekaran, Y. Liu, U. Karki, and F. Z. Peng, “Application of transformer-less UPFC for interconnecting synchronous AC grids, ” Proc. IEEE Energy Convers. Congr. Expos., Montreal, 2015, pp. 1-6. [21] F. Z. Peng, Y. Liu, S. Yang, S. Zhang, D. Gunasekaran, and U. Karki, “Transformer-less unified power-flow controller using the cascade multilevel inverter, ”IEEE Trans. Power Electron., vol. 31, pp. 5461-5472, 2016. [22] S. Yang, Y. Liu, X. Wang, D. Gunasekaran, U. Karki, and F. Z. Peng, “Modulation and control of transformerless UPFC, ” IEEE Trans. Power Electron., vol. 31, pp. 1050-1063, 2016. [23] Y. Liu, S. Yang, X. Wang, D. Gunasekaran, U. Karki, and F. Z. Peng, “Application of transformer-less upfc for interconnecting two synchronous AC grids with large phase difference” IEEE Trans. Power Electron., vol. 31, pp. 6092-6103, 2016. [24] A. M. Shotorbani, A. Ajami, S. G. Zadeh, M. P. Aghababa, and B. Mahboubi, “Robust terminal sliding mode power flow controller using unified power flow controller with adaptive observer and local measurem-ent, ” IET Gener. Transm. Distrib., vol. 8, pp. 1712-1723, 2014. [25] A. Ajami, A. M. Shotorbani, and M. P. Aagababa, “Application of the direct Lyapunov method for robust finite-time power flow control with a unified power flow controller, ” IET Gener. Transm. Distrib., vol. 6, pp. 822-830, 2012. [26] T. T. Ma, “P-Q decoupled control schemes using fuzzy neural networks for the unified power flow controller, ” Int. J. Electr. Power Energy Syst., vol. 29, pp. 748-758, 2007. [27] J. Monteiro, J. F. Silva, S. F. Pinto, and J. Palma, “Linear and sliding-mode control design for matrix converter-based unified power flow controllers, ” IEEE Trans. Power Electron., vol. 29, pp. 3357-3367, 2014. [28] M. J. Kumar, S. S. Dash, A. S. P. Immanuvel, and R. Prasanna, “Comparison of FBLC (feed-back linearization) and PI-controller for UPFC to enhance transient stability, ” Proc. Int. Conf. Comput. Commun. Electr. Technol., 2011, pp. 1-6. [29] B. Lu and B. T. Ooi, “Unified power flow controller (UPFC) under nonlinear control, ” Proc. PCC-Osaka Power Convers. Conf., 2002, pp. 1-6. [30] G. S. Ilango, C. Nagamani, and D. Aravindan, “Independent control of real and reactive power flows using UPFC based on adaptive back stepping, ” Proc. IEEE Reg. 10 Conf., Hyderabad, 2008, pp. 1-6. [31] S. Mehraeen, J. Sarangapani, and M. L. Crow, “Novel dynamic representation and control of power systems with FACTS devices, ” IEEE Trans. Power Syst., vol. 25, pp. 1542-1554, 2010. [32] H. Alasooly and M. Redha, “Optimal control of UPFC for load flow control and voltage flicker elimination and current harmonics elimination, ” Comput. Math. Appl., vol. 60, pp. 926-943, 2010. [33] A. Rajabi-Ghahnavieh, M. Fotuhi-Firuzabad, and M. Othman, “Optimal unified power flow controller application to enhance total transfer capability, ” IET Gener. Transm. Distrib., vol. 9, pp. 358-368, 2015. [34] S. A. Taher, S. Akbari, A. Abdolalipour, and R. Hematti, “Design of robust decentralized control for UPFC controller based on structured singular value, ” Am. J. Appl. Sci., vol. 5, no. 10, pp. 1269-1280, 2008. [35] F. Shalchi, H. Shayeghi, and H. A. Shayanfar, “Robust control design for UPFC to improve damping of oscillation in distribution system by H2 method, ” Proc. 16th Conf. Electr. Power Distrib. Networks, Bandar Abbas, 2011. [36] M. M. Farsangi, Y. H. Song, W. L. Fang, and X. F. Wang, “Robust FACTS control design using the H/sub/spl infin loop-shaping method," IEE Proc. Gener. Transm. Distrib., vol. 149, pp. 352-358, 2002. [37] M. Januszewski, J. Machowski, and J. W. Bialek, “Application of the direct Lyapunov method to improve damping of power swings by control of UPFC, ” IEE Proc. Gener. Transm. Distrib., pp. 252-260, 2004. [38] S. G. Nersesov, W. M. Haddad, and Q. Hui, “Finite-time stabilization of nonlinear dynamical systems via control vector Lyapunov functions, ” J. Franklin Inst., vol. 345, pp. 819-837, 2008. [39] S. Yu, X. Yu, B. Shirinzadeh, and Z. Man, “Continuous finite-time control for robotic manipulators with terminal sliding mode, ” Autom., vol. 41, pp. 1957-1964, 2005. [40] A. G. L. H. Huerta, J.M. Canedo, “Robust multi-machine power systems control via high order sliding modes, ” Electr. Power Syst. Res., vol. 81, pp. 1602-1609, 2011. [41] H. Huerta, A. G. Loukianov, and J. M.Cañedo, “Multimachine power-system control: integral-sm approach, ” IEEE Trans. Ind. Electron., vol. 56, pp. 2229-2236, 2009. [42] V. I. Utkin, J. Guldner, and J. Shi, Sliding Mode Control in Electromechanical Systems. London: Taylor & Francis, 1999. [43] G. Besancon, J. D. Leon–Morales, and O. Huerta–Guevara, “On adaptive observers for state affine systems, ”Int. J. Control, vol. 79, pp. 581-591, 2006. [44] H. Saadat, Power System Analysis, Second Edition ed.: McHraw-Hill, 2002. [45] W. C. Schultz and V. C. Rideout, “Control system performance measures: Past, present, and future” IRE Trans. Autom. Control, vol. AC-6, pp. 22-35, 1961. [46] R. Kazemzadeh, M. Moazen, R. Ajabi-Farshbaf, and M. Vatanpour, “STATCOM optimal allocation in transmission grids considering contingency analysis in OPF using BF-PSO algorithm, ” J. Oper. Autom. Power Eng., vol. 1, no. 1, pp. 1-11, 2013. | ||
آمار تعداد مشاهده مقاله: 1,205 تعداد دریافت فایل اصل مقاله: 835 |