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ABSTRACT 
Nowadays, demand response programs (DRPs) play an important role in price reduction and reliability improvement. 
In this paper, an optimal integrated model for the emergency demand response program (EDRP) and dynamic 
economic emission dispatch (DEED) problem has been developed. Customer’s behavior is modeled based on the price 
elasticity matrix (PEM) by which the level of DRP is determined for a given type of customer. Valve-point loading 
effect, prohibited operating zones (POZs), and the other non-linear constraints make the DEED problem into a non-
convex and non-smooth multi-objective optimization problem. In the proposed model, the fuel cost and emission are 
minimized and the optimal incentive is determined simultaneously. The imperialist competitive algorithm (ICA) has 
solved the combined problem. The proposed model is applied on a ten units test system and results indicate the 
practical benefits of the proposed model. Finally, depending on different policies, DRPs are prioritized by using 
strategy success indices.  

 
KEYWORDS: Emergency demand response program, Dynamic economic emission dispatch, Imperialist 
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1. INTRODUCTION 

Determining the optimal incentive in the 
incentive-based demand response programs 
(DRPs) should be based on a feasible and 
economical approach. Otherwise, it may impose a 
high additional cost at the supply side, create new 
peak when DRP ends [1], and decrease the 
network reliability [2].1 Due to the natures of the 
emergency DRP (EDRP) and dynamic economic 
emission dispatch (DEED) problems which focus 
on the demand side and supply side respectively, 
for a more comprehensive and effective 
investigation, integrating these two problems 
seems very useful. In other words, in the 
combined model, the fuel cost and emission are 
minimized and the optimal incentive is 
determined simultaneously. Modeling the 
customer’s behavior based on price elasticity 
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matrix (PEM) is one of the most feasible and 
powerful methods in this field [3-6]. 

EDRP and direct load control (DLC) are both 
voluntary incentive-based DRPs and there is no 
difference between their modeling. In other words 
these two programs have a same modeling as will be 
developed in the part two in this paper. Actually the 
ways of implementing of these two programs by 
independent system operator (ISO) is the main 
difference between them. In DLC, ISO directly 
controls some special loads which have possibility 
of being controlled remotely and this is not possible 
for all kind of loads. In EDRP, ISO motivates 
customers to reduce, interrupt, or shift their loads 
and it is possible for all kind of loads. On the other 
hand when EDRP is implemented, people have 
more social welfare in comparison to DLC. For the 
time-based DRPs like time of use (TOU), real time 
pricing (RTP), and critical peak pricing (CPP), 
instead of the optimal incentive, the optimal 
electricity price is determined during different 
periods.  
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A time-based DRP has been implemented in [7] 
to serve the power and heat demands of the 
customer with minimum cost. In the proposed DRP, 
the amount of responsive load can vary in different 
time intervals. The aim of the proposed DRP is to 
shift the load from high market price time intervals 
to the low market price time intervals. Actually they 
have presented the short-term hourly scheduling of 
industrial and commercial customers with 
cogeneration facilities, conventional power units, 
and heat-only units.  

Real time pricing (RTP) program has been 
investigated in [8]. They have presented a combined 
scheduling and bidding algorithm for constructing 
the bidding curve of an electric utility that 
participated in the day-ahead energy markets.  

In Ref. [9] EDRP and Interruptible/Curtail able 
(I/C) programs have been implemented in the unit 
commitment (UC) problem. Then, the effects of 
these two DRPs have been compared in the long-
term UC problem with fuel constraints. The 
proposed methodology has been formulated as a 
mixed integer linear problem and implemented in 
GAMS environment. 

A robust optimization approach has been 
proposed in Ref. [10] for decision making of 
electricity retailers. Meanwhile, considering the 
effect of DRP on total procurement cost, an optimal 
bidding strategy is proposed of electricity retailers 
with the time-based model of DRP in the electricity 
market. Also, it is considered that the consumers 
only participate in TOU programs. Moreover, rather 
than using the forecasted prices as inputs, the upper 
and lower limits of pool prices have been considered 
for the uncertainty modeling in their proposed 
model. 

Up to now many works have been carried out 
based on the UC problem integrating with DRPs 
[11-15]. 

As mentioned above, the UC problem integrating 
with DRP has been investigated a lot. But, there are 
few works related to the economic dispatch problem 
integrating with the DRPs to appoint the optimal 
incentive or price and get the minimum generation 
cost. Y. Chen and J. Li [16] compared three 
formulations of the security constrained economic 
dispatch for facilitating participation of DRRs in the 

Midwest ISOs energy and the ancillary service 
market. They mainly focused on the interruptible 
loads [16]. A. Ashfaq et al. [17] presented a 
combined model of the economic dispatch problem 
integrating with demand side response. In their 
model, at the peak hours, the price signal is set by 
the generation company one hour ahead and sent to 
the residential area. They have neglected some 
constraints in the economic dispatch problem and 
like the pervious mentioned work the emission 
objective of the generating units has not been taken 
into account. Also, in their model just peak hours 
have been considered and it has not been applied to 
the whole day. N.I. Nwulu and X. Xia [18] 
investigated the game theory based DR integrating 
with the economic and environmental dispatch [18]. 
Game theory is the study of strategic decision 
making introduced by John von Neumann in 1928. 
Specifically, it is the study of mathematical 
models of conflict and cooperation between 
intelligent rational decision-makers. One of the main 
drawbacks of this theory is the difficulty of using it 
as a basis for estimation. In other words, after 
modeling, the model will not be so clear and in 
realistic systems may not be so helpful. Also, in Ref. 
[18] the valve-point loading effect and POZs have 
not been considered in their model. Also, their 
combined model is not so clear and by paying 
incentives to the customers, at the all hours of the 
operation, the demand is decreased which may not 
be always realistic, practical and economical. Also, 
this may not be based on the ISO point of view. In 
fact, customers who participate in DRPs can 
decrease or shift their demand during peak hours to 
off-peak hours. Actually they have neglected the 
shift-able loads. 

Soft computing methods have higher capability of 
solving the non-linear multi-objective problems than 
the traditional methods and usually can optimally 
solve non-convex and non-smooth cost functions. 
Particle swarm optimization [19], gravitational 
search [20], artificial bee colony [21], harmony 
search [22], intelligent tuned harmony search 
(ITHS) [23], spiral [24], and imperialist competitive 
algorithm (ICA) [25-27] are some of these 
optimization algorithms. Among the mentioned 
optimization algorithms, ICA is a new one 
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introduced in 2007 by E. A. Gargari [25]. It has a 
good performance in solving optimization problems 
in different areas such as DG planning, plate-fin heat 
exchangers design, template matching and 
electromagnetic problems [26, 27]. 

The major contributions of this paper are: (i) 
Integration of EDRP with the multi-objective DEED 
problem to schedule the online generators power 
output and determine the optimal incentive. (ii) The 
effectiveness of the final model is shown by 
applying it on the ten unit’s test system in three 
different case studies. (iii) Investigation the effects of 
the EDRP-DEED model on the improvement of the 
load curve characteristics. (iv) Prioritizing of DRPs 
based on different policies by using the strategy 
success indices. Moreover, although valve point 
loading effect and POZ have been considered in 
DEED problem, but they have not been considered 
in an integrated model of DEED and DRPs. 
Actually addition of these constraints are the 
innovation of this paper. 

The rest of this paper is organized as follows. In 
Section 2, the economic model of the price-based 
and incentive-based DRPs is developed based on 
PEM and the customer’s benefit function. 
Formulation of the DEED problem is presented in 
Section 3. In Section 4 the optimal model through 
combining of DEED and EDRP including their 
constraints is developed. The characteristics of the 
test system are introduced in Section 5. Numerical 
simulation and results are presented in Section 6. 
Finlay, in Section 7 the conclusion is drawn. 

 
2. ECONOMIC MODEL OF RESPONSIVE 

LOAD 
To obtain the optimal consumption at the demand 
side, the elasticity is defined as the sensitivity of the 
demand respect to the price as Eq. (1) [2, 4, and 28]. 
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where, E is the elasticity, d(t) and d0(t) are the 
customer demands after implementing DRP and 
before it, during period t, ρ(t’) and ρ0(t’) are the 
elasticity price and the initial electricity price during 
period	ݐᇱ, respectively. 

For 24 hours in a day, self and cross elasticity 
values can be given as a 24×24 matrix as Eq. (2). 
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2.1. Modeling of single period elastic loads 
In this case, the total revenue for the customers who 
participate in the DRPs will be calculated as Eq. (3) 
based on the hourly incentive rate. In other words, 
DRPs create a motivation for customers to reduce 
their consumption. The total payment given to the 
customers is as Eq. (3) [28]. 

(3)      IN C d t inc t d t       

where, inc(t) is the amount of the incentive 

for reducing the consumption per MW.h, d(t) 
is the amount of the reduced load. 

Some programs consider a penalty for the 
customers who promise to participate in the 
DRP, but they don’t (Eq. (4)). Most of the 
DRPs like EDRP and DLC are implemented 
voluntary. So, customers’ are not penalized if 
they don’t participate in DRPs (if they don’t 
reduce or cut their consumption during peak 
hours). But, a DRP can be implemented mand-
atorily which means that if customers’ don’t 
reduce their consumption during peak hours 
they will be penalized by an additional cost in 
their electricity bill. Some examples of 
mandatory programs are capacity market 
program (CAP) and interruptible / curtail-able 
(I/C) service programs. 

(4)         PEN d t pen t IC t d t      
 

where, IC(t) is the amount of the demand which 
the customer is responsive to reduce or shift. 

Consumers who participate in DRP, increase their 
production benefit, decrease their consumption, and 
receive the reward from the system operator. Thus, 
the net-profit of the customer is as Eq. (5) which is 
related to the customer’s income because of 
electricity consumption and producing their 
commodities. 

(5)
           NP t B d t d t t INC d t     

              P E N d t   
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where, B is the profit which customers obtain by 
consuming power. 

To maximize the customer benefit, the derivative 
of Eq. (5) should be zero. 
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As mentioned before, it is assumed that B(d(t)) is 
customer’s benefit from the use of electricity during 
tth hour. Taylor series of B is given by Eq. (8).  
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To obtain the optimal consumption by which the 
customers get the maximum profit, from Eq. (8): 
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Differentiating: 
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By combining Eqs. (10) and (7), for the single-
period model of the load can be obtained: 
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2.2. Modeling of multi period elastic loads 
Now, to consider shift-able loads in the, then we 

will have the multi period model as the following 
equation: 
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2.3. Load economic model 
Finally, the combined model including the single 

and multi- period models of the load (considering 
curtail-able, interruptible, and shift-able loads) is 
given by Eq. (13). 

(13)

   
       

   

         
 

0

0

0

24
0

t 1 0
t

d t d t

ρ t ρ t inc t pen t
1 E t, t

ρ t

ρ t' ρ t inc t pen t'
E t, t

ρ t'
t







 

    
 

  
     
  




 
  



Equation (11) is the single period elastic load 

model which considers just interruptible or curtail 
able (I/C) loads. Eq. (12) is for multi-period elastic 
load model which considers just shift-able loads. 
Eq. (13) is the combined model included both single 
and multi-periods models which consider both (I/C) 
and shift-able loads. In this paper the combined 
model is taken into account. 

 

3. DYNAMIC ECONOMIC EMISSION 
DISPATCH FORMULATION 

When the valve-point, loading effect is taken into 
account, the total fuel cost over the whole dispatch 
period is as follows.  
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where, ai, bi, ci, di and ei are the fuel cost 
coefficients of the ith unit, Pi

min is the minimum 
power generation, Pi,t is the power output of the ith 
unit during the t-th time interval, Ng and T are the 
number of the generating units and the dispatch 
interval, respectively. 

The atmospheric pollution caused by the fossil-
fired generator contains carbon dioxide CO2, 
nitrogen oxides NOx, sulfur oxides SOx, etc. The 
environmental objective is as follows. 
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where, , , ,i i i i    , and i are coefficients of 

the emission issue for the i-th unit. 
 

4. THE COMBINED MODEL OF EDRP 
INTEGRATED WITH THE DEED 

PROBLEM 
The cost of implementing EDRP is as Eq. (18). 

(18)0( ) ( ( ) ( )) ( )EDRPC t d t d t inc t   

The multi-objective optimization problem can be 
changed to a single objective function using a 
penalty factor as follows: 
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where,  
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The first and second terms in Eq. (19) are cost 
functions ($) and the third term is emission (Ib). 
Therefore, to have same unit for cost and emission 
i.e. in dollar, the third term’s unit should be changed 
from Ib to $. Therefore, that is why a price penalty 
factor (pff) is used. In other words, pff changes the 
unit of third term in Eq. (19) from Ib to $ [29].  
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4.1. Constraints 
The DEED problem should satisfy the following 
equality and inequality constraints. 

4.1.1. Power balance constraint 
The total power output should be equal to the 
predicted load demand plus the total losses. 

(22)     
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where, d(t) and PL(t) are the load demand and the 
power loss of transmission line at the t-th time 
interval. Generally PL(t) is calculated by Kron’s loss 
formula, which can be given as Eq. (23). 
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where, Bi,j is the power loss coefficient of the 
transmission network. 

 

4.1.2. Incentive limits 
For EDRP program, the incentives paid to the 
customers should be in a feasible range. 

(24)     min max
inc t inc t inc t   

Referring to [32] inc(t)min and inc(t)max are usually 
considered to be 0.1×ρ0(t) and 10×ρ0(t), respectively. 

 
4.1.3. Power generation limits 
Generators power output is limited by its upper and 
lower generation limits. 

(25),     i 1 ,2min max
i i t i gP P P N     

where, min
iP  and max

iP  are the lower and upper 

generation limits for the ith unit. 
 

4.1.4. Prohibited operation zones constraint 
In practice, generators should not work in some 
POZs. The main reason of this limitation is the 
vibration of the shaft bearing. So, generators should 
work in the feasible operating zones as given by Eq. 
(26). 

(26)
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where, Pl
i,k and Pu

i,k are the lower and upper limits 
of the kth POZ respectively, M is the number of 
POZs for the ith unit. 

4.1.5. Generator ramp rate limits 
Generator longevity is effectively influenced by the 
thermal stress. The increase and decrease rates of the 
generator power output are usually called the ramp-
up and ramp-down, respectively. So, the operating 
range of the i-th unit is as Eq. (27). 
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where, ܷܴ௜ and ܴܦ௜ are the up-ramp and down-
ramp limits of the i-th unit, respectively and are 
usually expressed in MW/h. 

4.2. Solving the DEED-EDRP problem 
In this part a general procedure for solving the 
DEED-EDRP problem by the population-based 
meta-heuristic algorithms is presented. In fact, the 
population includes some possible solutions of the 
optimization problem. The population size is 
determined by the number of possible solutions. The 
possible solutions in ICA are called countries, in 
PSO particles, in ABC artificial bees, etc. Also, 
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every possible solution is called a candidate. In 
DEED-EDRP, every scheduled generating unit 
output at each hour comprises a component of the 
population. In other words, it is a candidate for 
DEED-EDRP optimization problem at each hour. 
The kth candidate (PGk) at each hour is defined as 
Eq. (28). 

(28),1 ,2 , ,, , . . . , , . . . , , 1,2 '
gk k k k j k NPG P P P P k M      

where, PGk is the current position of the kth 
vector, Ng is the number of generation units, M’ is 
the population size, j is the generator number, and 
Pk,j is the power output of the jth generation unit. 

Constraint Eq. (22) can be handled by using a 
penalty term in Eq. (29). Thus, the evaluation 
function used in DEED-EDRP can be written as Eq. 
(29). 

(29) 
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



where, Kn is the penalty factor, which is a positive 

real number. The amount of Kn at each hour 
increases with the algorithm iterations. If the 
constraint Eq. (22) is nonzero, the amount of the 
second term in Eq. (29) will be nonzero, too. In 
other words, a candidate which doesn’t meet the 
constraint Eq. (22) will have a large evaluation 
function and more likely will be discarded. On the 
other hand, a candidate which meets the constraint 
Eq. (22) will have a relatively small evaluation 
function and consequently will be kept. Kn can be 
written as Eq. (30). 

(30)1000 ; 1,....n iterK n n N    

where, Niter is the maximum number of iterations 
at each hour. 

To ensure meeting of constraints Eqs. (25) - (27), 
before calculating the evaluation function of each 
candidate by Eq. (29), the power generation outputs 
of each candidate should be in the acceptable ranges 
specified by constraints Eqs. (25) - (27). If a 
candidate meets the constraints Eqs. (25) - (27), its 
evaluation function will be determined by Eq. (29). 
Otherwise, its evaluation function will be penalized 
by a large number. For more information about ICA, 
refer to [25-27]. The solution method for EDRP-

DEED problem can be summarized in some steps as 
following. 

Step 1: Defining technical units’ data, daily load 
demand, ρ0ሺtሻ , PEM, load model, participation 
percentage (μ), and initial incentive (is set to zero by 
ISO). Moreover, in ICA optimization, the initial 
population which is a set of possible solutions of the 
EDRP-DED problem, is defined based on the 
pervious section.  

Step 2: Increasing the amount of incentive by ISO 
and determining the hourly demand and total 
incentive. Also, generation costs are determined by 
the supply side in this step.  

Step 3: Solving the EDRP-DED problem by ICA 
and determining the optimal generation power 
outputs which are announced to the supply side. 

Step 4: Continuing the process from step 2 until 
the minimum cost of generation units is obtained 
and the optimal incentive is determined by ISO. 

 

5. TEST SYSTEM 
To show the correctness, features, and practical 
benefits of the proposed model, it is applied on the 
ten unit’s test system. The test system is taken from 
[30, 31] with some modifications. The characteristi-
cs of the test system are given as Table 1-2. Also, the 
elements of PEM are like Table 3. The daily load 
curve is divided into the peak period (9 A.M. - 14 
P.M. & 19 P.M. - 24 P.M.), the off-peak period (5 
A.M. - 9 A.M. & 14 P.M. - 19 P.M), and the valley 
period (0 A.M.-5 A.M.). DR implementation pot-
ential (μ) is considered 20%. It means that 20 
percent of the customers participate in the DRP. The 
initial electricity price (ρ0	)is as Fig. 1 [32]. Also, the 
transmission line losses coefficients of the ten-unit 
test system are as Eq. (31). 

(31)

49 14 15 15 16 17 17 18 19 20

14 45 16 16 17 15 15 16 18 18

15 16 39 10 12 12 14 14 16 16

15 16 10 40 14 10 11 12 14 15

16 17 12 14 35 11 13 13 15 16

17 15 12 10 11 36 12 12 14 15

17 15 14 11 13 12 38 16 16 18

18 16 14 12 13 12 38 16 16 18

19 18 16 14 15 14 16 15 42 19

20 18 16 15 16 15 18 16 19

B  610
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 
  

 

 
Table 1. Ten-unit test system characteristics (a) 

Units 
 ࢞ࢇ࢓ࡼ
(MW) 

 ࢔࢏࢓ࡼ
(MW) 

 ࢏ࢇ
($/h) 

 ࢏࢈
($/MWh) 

 ࢏ࢉ
($/ሺࢎࡹሻ૛ࢎሻ 

1 455 150 1000 16.19 0.00084 
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2 455 150 970 17.26 0.00031 

3 130 20 700 16.6 0.002 

4 130 20 680 16.5 0.00211 

5 162 25 450 19.7 0.00398 

6 80 20 370 22.26 0.00712 

7 85 25 480 27.74 0.00079 

8 55 10 660 25.92 0.00413 

9 55 10 665 27.27 0.00222 

10 55 10 670 27.79 0.00173 

Units 
 ࢏ࢊ

($/h) 
 ࢏ࢋ

(rad/MW) 
 ࢙ࢆࡻࡼ
(MW) 

1 40 0.0141 — 
2 60 0.0136 [185-210], [275-305], [410-420] 
3 30 0.0128 — 
4 20 0.0152 [25-40], [55-70], [75-85] 
5 20 0.0163 — 
6 30 0.0148 [30-45] , [50-65] 
7 30 0.0168 [35-50] , [55-70] 
8 32 0.0162 [15-25] , [35-45] 
9 25 0.0178 — 
10 33 0.0174 — 

Table 2. Ten-unit test system characteristics (b) 

Units ࢏ࢻ 
(Ib/h) 

 ࢏ࢼ
(Ib/MWh) 

 ࢏ࢽ
(Ib/ሺࢎࡹሻ૛ࢎሻ 

 ࢏ࣁ
(Ib/h) 

1 42.8955 -0.5112 0.00460 0.25470 
2 42.8955 -0.5112 0.00460 0.25470 
3 40.2669 -0.5455 0.00680 0.24990 
4 40.2669 -0.5455 0.00680 0.24800 
5 13.8593 0.3277 0.00420 0.24970 
6 13.8593 0.3277 0.00420 0.24970 
7 330.0056 -3.9023 0.04652 0.25163 
8 330.0056 -3.9023 0.04652 0.25163 
9 350.0056 -3.9524 0.04652 0.25475 
10 360.0012 -3.9864 0.04702 0.25475 

Units ߜ௜ 
(1/MW) 

UR 
(MW/h) 

DR 
(MW/h)

1 0.01234 80 80 
2 0.01234 80 80 
3 0.01203 50 50 
4 0.01290 50 50 
5 0.01200 50 50 
6 0.01200 30 30 
7 0.01215 30 30 
8 0.01215 30 30 
9 0.01234 30 30 
10 0.01234 30 30 

Table 3. Self and cross elasticity values. 
 Peak Off-peak Valley 

Peak -0.10 0.016 0.012 
Off-peak 0.016 -0.10 0.01 

Valley 0.012 0.01 -0.10 

6. NUMERICAL SIMULATION AND 
RESULTS 

In this paper, the cost based, emission based, and 

cost-emission based DEED integrated with EDRP 

through three different case studies are investigated. 

On the other hand, the effects of the elasticity values 

and incentives on the results are evaluated. The 

initial daily load demand is as Fig. 2. 

 
Fig. 1. Initial electricity price ($/MWh) 

 

Fig. 2. Daily load curve 

Three different groups with different values of 
PEM have been taken into account. In each case 
study, ten scenarios have been defined with different 
PEMs and incentives. Scenario 1 is the base case 
without implementing EDRP, scenarios 2-4 (group 
one with a PEM equals to E as Table 2) have 
incentives 4, 8, and 12 $/MWh, scenarios 5-7 (group 
two with PEM equals to 0.5× E) have incentives 4, 
8, and 12 $/MWh, scenarios 8-10 (group three with 
PEM equals to 2×E) have incentives 4, 8, and 12 
$/MWh, respectively. 

To investigate the impacts of implementing 
EDRP on the load curve characteristics, some 
factors are defined as following. To evaluate the 
smoothness of the load curve, the load factor is 
defined as Eq. (32). Ideally, it is 100% which 
implies that at all hours of the operation the amount 
of demand is constant and does not change 
throughout the day. 
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(32)
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Peak-to-valley, peak-compensate, and deviation-
of-peak-to-valley are the other important factors 
which are defined as Eqs. (33) - (35). 
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m ax m in
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(35)
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DRPs are usually prioritized by ISO to compare 
the performance value of the DR strategies. 
Therefore, in this paper to prioritize scenarios, the 
strategy index (SI) and strategy success index (SSI) 
are defined as Eqs. (36) and (37), respectively. 

(36)        1 2
24

1 2
1

 . . . kw w w

k
t

SI St t St t St t


  

(37)
 

 
1

1

100

N

i
N

i

SI i
SSI

SI max




 


 

where, St(t) is the performance value of the 
scenario in the period t, Wk is the weighting for the k-
th attribute, N is the total days of DRPs implem-
entation, and SSI represents the normalized value of 
SI. The higher SSI represents the better profit. 

 
6.1. Case study one: cost based DEED integrated 

with EDRP 
In this case, the effects of implementing EDRP on 
the overall cost of the generation units are evaluated. 

So, F and E are considered to be 1 and 0, respect-

ively. Results are shown in Table 4. In all scenarios, 
after implementing EDRP, the total cost reduces. 
Implanting EDRP imposes an additional cost 
(CEDRP) which is paid as the incentive to the 
customers. But, the total cost which is sum of the 
cost of the generating units and the total incentive, 
reduces. Scenario 9 has the most reduction of the 
total cost by 17411.0128$ (679111.1848-
661700.1720) and scenario 5 has the least one by 
4014.4215 $ (679111.1848-675096.7633). On the 
other hand, the customer’s benefit in each group 
increases with the incentive value and PEM and 
decreases with the generation cost of units. For 

example, scenario 10 has the most total incentive 
(35839.3653 $) and scenario 5 has the least one 
(995.5379$). 

Table 4. Scenarios’ performance in the case one 

Scenario 
Total generation 

cost ($) 
Total 

incentive ($) 
Total cost ($) 

1 679111.1848 — 679111.1848 
2 669700.6678 1991.0758 671691.7437 
3 660272.7458 7964.3034 668237.0492 
4 651999.4772 17919.6826 669919.1599 
5 674101.2254 995.5379 675096.7633 
6 669686.4824 3982.1517 673668.6341 
7 665398.5145 8959.8413 674358.3558 
8 661476.1561 3982.1517 665458.3078 
9 645771.5652 15928.6068 661700.1720 
10 635583.916 35839.3653 671423.2813 

The optimal incentives for three different groups 
are determined as shown in Table 5. Also, in all 
scenarios total losses decreases, too. All character-
istics of the load curve are improved for three groups 
as shown in Table 6. 

Table 5. Groups’ performance for the optimal incentives in the 
case one 

Group 
Optimal 
incentive 
($/MWh) 

Total generation 
cost ($) 

Total 
incentive 

($) 
Base case — 679111.1848 — 

One 7.75 660626.9668 7474.3121 
Two 10.32 665495.0939 6623.0299 
Three 5.87 652631.6164 8590.4034 

Group Total cost ($) 
Total power 
losses(MW) 

— 
Base case 679111.1848 769.7731 

One 668101.2789 739.4306 
Two 672118.1237 740.8757 
Three 661222.0198 693.7434 

Table 6. Load curve’s characteristics in the case one 

Group 
Load 
factor 

Peak to 
valley 

Peak 
compensate 

Deviation 
of peak to 

valley 
Base 
case 

76.39 53.33 — — 

One 80.15 49.11 7.48 14.80 
Two 78.10 51.41 3.55 7.03 
Three 81.33 46.46 11.34 22.77 

The load curves before and after implementing 
EDRP for three different groups (for their optimal 
incentives) are shown in Fig. 3. Customers with the 
highest PEM have more willingness to reduce or 
shift their consumption during peak hours (group 
three of the customers) and vice versa (group two of 
the customers). Actually, by implementing the 
EDRP, the load curve smoothens which improves 
the network reliability. 
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5 390 267.0335 52.33952 85 101.6804 47.48763 30.61284 15 10.19548 24.39218 
6 433.8736 347.0335 50.11793 92.06238 56.89958 28.54348 33.46109 45 27.28848 15.57493 
7 446.6911 345.5086 75.58416 112.9852 56.08574 26.88016 32.65191 31.60081 40.43256 13.77038 
8 366.6911 425.5086 98.37808 103.086 106.0857 65 29.89463 13.56929 15.49595 10 
9 367.0852 430.1813 118.431 89.70195 156.0857 68.29093 29.53957 45 10 24.07745 
10 447.0852 420.5234 128.4045 123.2035 133.2943 65 70 30.52909 10 16.76485 
11 455 443.6234 130 111.8638 136.884 65 70 12.54559 33.12652 40.32668 
12 455 449.4167 130 126.3022 162 65.24816 71.82764 45 35.87504 10.32668 
13 452.9055 389.4062 129.8111 119.1658 125.3109 65 76.56733 50.54382 13.80363 21.79765 
14 455 400.4528 114.9359 85 80.23671 65 70.1974 34.32804 10 24.65694 
15 375 442.6851 64.9359 122.8244 50.6497 73.36889 52.6237 12.72644 15.00224 24.50812 
16 301.8589 377.1026 114.9359 85.98152 35.88778 65 30.40196 32.65795 19.08779 12.50596 
17 381.8589 329.3905 64.9359 70.42312 29.41574 65 30.78129 12.12719 19.96428 20.55156 
18 405.0488 394.5353 95.00446 46.83145 26.91788 69.63742 51.6138 13.84193 13.9593 12.51913 
19 455 436.1718 46.09915 96.83145 76.91788 65 70 12.6892 18.38966 11.26751 
20 455 437.4784 96.09915 124.533 116.9341 77.66695 70 45 10 12.62963 
21 455 394.2677 94.5559 102.0265 79.42167 74.46078 70 15 12.40555 42.62963 
22 375.745 397.9068 74.50345 89.71224 77.12804 49.73815 70 10.98237 12.08122 23.45051 
23 392.2455 374.1333 62.13671 46.03439 78.53448 25.33387 50.02141 26.8977 10.26565 11.73639 
24 312.2455 307.1181 108.4851 72.7076 28.53448 65 30.08306 11.00563 11.13948 24.57502 

Table 10. Optimal generators power output (case 1, group 1, incentive 7.75 $/MWh, after implementing EDRP) 
Hour ࡼ૚(MW) ࡼ૛(MW) ࡼ૜(MW) ࡼ૝(MW) ࡼ૞(MW) ࡼ૟(MW) ࡼૠ(MW) ࡼૡ(MW) ૢࡼ(MW) ࡼ૚૙(MW) 

1 159.8035 226.6205 85.82839 48.51468 57.2006 22.95584 26.69639 46.18369 21.64581 21.47983 
2 239.8035 179.4035 60.54318 85 44.8248 29.9754 29.40787 53.08889 18.88343 28.18016 
3 299.2614 259.4035 31.77494 85 43.34917 27.70434 50.01592 30.67103 36.29844 11.24974 
4 379.2614 182.563 64.44217 85 93.34917 49.67918 34.08422 45.07673 23.30656 22.96594 
5 299.2614 262.563 114.4422 85 125.3316 24.51648 32.31975 50.47622 22.14551 15.03279 
6 379.2614 320.7022 70.89777 108.1699 75.33159 65 26.909 31.35368 48.05633 15.96953 
7 371.5328 400.7022 50.6717 99.26182 84.44543 65 32.46259 49.30955 27.98502 14.20571 
8 426.4736 382.9169 51.28612 110.4204 96.25642 65 25.51265 45 30.0347 16.4447 
9 455 452.0681 101.2861 98.48865 46.25642 65 27.24451 32.80284 55 24.35663 
10 455 425.0122 102.4829 85 96.25642 46.83228 31.781 34.70053 25.72526 32.87751 
11 417.6214 400.1585 112.6041 127.3472 146.2564 65 30.68051 52.05293 20.68154 10.01162 
12 430.0328 422.7976 127.0438 97.44613 142.8555 66.77055 27.93882 49.91953 31.27763 35.84971 
13 350.0328 408.3643 129.9616 111.1635 162 65 28.89328 45 12.19888 20.03089 
14 430.0328 328.3643 97.95841 93.85765 112 72.77545 31.50753 15 21.81147 33.06842 
15 357.5289 408.3643 125.3128 102.6092 72.24709 69.51408 34.69267 45 21.79396 10.99171 
16 323.6045 375.7817 116.0473 85 27.09675 65 32.01686 15 20.62362 28.75407 
17 271.9672 438.765 56.47937 85.94941 34.48164 46.23864 54.02472 11.16455 17.65936 20.58893 
18 351.9672 358.765 106.4794 104.2435 84.48164 28.46595 31.19196 45 21.08438 10 
19 389.0167 438.765 126.9681 107.086 44.83316 65 70 15 31.66874 13.99587 
20 455 430.5116 89.23892 119.4467 25.21213 65 84.02351 26.13844 31.05067 10 
21 420.2483 355.867 107.5968 124.5094 75.21213 46.34431 70 14.22062 10.2291 12.23036 
22 384.2155 349.7336 108.9581 74.50942 25.21213 21.9332 52.42813 30.218 17.73097 26.37444 
23 304.2155 269.7336 97.37275 112.9782 75.21213 24.17103 34.51549 14.37614 39.02653 20.92095 
24 224.2155 234.2253 79.80722 122.3652 125.2121 24.19863 28.64941 27.8196 17.39608 11.38794 
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