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Abstract. This study explores the application of tension fields and harmonic

maps in image processing, highlighting their utility in enhancing computa-

tional techniques. A significant focus is placed on the integration of harmonic

maps into image processing tasks, such as edge detection, image segmentation,

and boundary analysis. The notion of (α, f)−harmonic maps, encompassing

both α-harmonic and f−harmonic maps, further broadens their applicability.

Practical methodologies for implementing harmonic maps in image enhance-

ment are discussed, showcasing their effectiveness in improving image clarity

and structure. Additionally, the study proposes a Liouville-type theorem for

(α, f)−harmonic maps, contributing to the theoretical framework of this field.
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1. Introduction

Sacks-Uhlenbeck α− harmonic maps, as an extension of harmonic maps,

minimizes α−energy functional Eα(φ) =
∫
M

(1+ | dφ |2)αdVg, for α > 1. These

maps satisfies the corresponding Euler-Lagrange equation associated to Eα as

follows

τα(φ) := 2α(1+ | dφ |2)α−1τ(φ) + 2αgradM (dφ((1+ | dφ |2)α−1)) = 0, (1.1)

where τ(φ) is the tension field of φ defined by τ(φ) = traceg∇dφ.

In physics, α-harmonic maps significantly contribute to the theory of gauge

fields, serving as a generalization of classical electromagnetic fields, which form

the foundation of the standard model of particle physics, [14, 11]. An interesting

observation is that for any sequence of Sacks-Uhlenbeck α−harmonic maps

from a compact Riemannian surface M to a sphere Sk−1, there is no energy

loss during the blow-up process as α approaches 1. Additionally, it has been

noted that the image of the weak limit maps and bubbles is a connected set

[12]. In 2019, Karen Uhlenbeck made history by becoming the first woman to

win the prestigious Abel Prize for her remarkable contributions to the study of

α-harmonic maps and their applications in physics.

In view of physics, α−harmonic maps play an important role in the theory of

gauge fields, as a generalization of the theory of classical electromagnetic fields,

that underpin the standard model of particle physics, [14, 11], For instance,

there is no energy loss for any sequence of Sacks-Uhlenbeck α−harmonic maps

from a compact Riemannian surface M to a sphere Sk−1 during the blow up

process as α ↘ 1. Moreover, the image of the weak limit maps and bubbles

is a connected set, [12]. In 2019, Karen Uhlenbeck , as the first woman, won

prestigious Abel prize for her prominent works on α- harmonic maps and their

physical applications.

Recently, α−harmonic maps were investigated by many scholars. In [9],

The stability and existence of α−harmonic maps are investigated while the

researchers in [19] examined the instability of nonconstant α-harmonic maps

in relation to the Ricci curvature criterion of their target space. Additionally,

they calculated the Morse index to quantify the degree of instability of certain

specific α-harmonic maps. In the paper [18], the concept of sacks-Uhlenbeck

α-harmonic maps has been expanded to Finsler spaces and studied in depth.

Additionally, the conditions have been identified under which any non-constant

α-harmonic maps from a compact Finsler manifold to a standard unit sphere

Sn (where n > 2) are shown to be unstable. In [13], the authors examined

the energy identity and necklessness for a sequence of α−harmonic maps as

they undergo blowing up, specifically when their codomain is a sphere Sk−1.

Additionally, they demonstrated that the energy identity can be utilized to

present an alternative proof of Perelman’s result [15] that the Ricci flow from
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a compact orientable prime non-aspherical 3-dimensional manifold becomes

extinct in finite time. This is in contrast to the findings in [10].

In 1970, A. Lichnerowicz first explored f-harmonic maps as an extension of

harmonic maps, geodesics, and minimal surfaces, [6]. More recently, N. Course

[5] delved into the study of the f-harmonic flow on surfaces, while Y. Ou [7]

analyzed f-harmonic morphisms as a specific type of harmonic maps that pull

back harmonic functions to f-harmonic functions.

Let f ∈ C∞(M) be a smooth positive function. A smooth map φ : (M, g) −→
(N,h) is said to be f−harmonic if it is a critical point the f− energy functional

Ef (φ) :=
∫
M
f | dφ |2 dVg. It is notable that f-harmonic maps can be viewed as

the fixed solutions of the inhomogeneous Heisenberg spin system. This means

that they play a significant role in understanding the behavior of this system

and its stationary states[7].

The goal of this paper is to study the (α, f)−harmonic maps as an extension

of α−harmonic maps and f-harmonic maps. For this purpose we introduce

(α, f)−energy functional and calculate its variational formulas. Then we give

a Liouville type thorem for this type of harmonic maps.

This manuscript is organized as follows:

Section 2 focuses on exploring the practical applications of tension field and

harmonic maps in the field of image processing, providing in-depth details.

In section 3, the (α, f)−energy functional is introduced, and its variational

formulas are derived. The key findings of this paper are presented in section 4,

where a Liouville theorem is provided for (α, f)−harmonic maps.

2. Applications of Tension Field and Harmonic Maps in the Image

Processing

Image processing refers to a group of methods and techniques whose purpose

is to make appropriate changes in the image for a specific application. It can

be said that all the manipulations and analysis on the image are done with two

goals: enhancing the image quality for a specific application or understanding

and interpretation of the image by the computer. Most of the strategies utilized

in image processing are based on the fundamental concepts of diverse field

of mathematics, [1, 3]. For instance the theory of harmonic maps plays an

important role in edge discovery, distinguishing boundaries and locales, image

segmentation, etc, [2].

The concept of harmonic maps was originally introduced by Eells and Samp-

son in 1964 [8]. According to the variational characterization, a harmonic map-

ping of a Riemannian manifold ψ : (M, g) −→ (N,h) is considered harmonic if

its energy functional E(ψ) = 1
2

∫
M
| dψ |2 dVg, remains stable to first order of

variations. In terms of the Euler-Lagrange equation, ψ is harmonic if it satisfies

the following second order nonlinear PDE:
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τ(ψ) := traceg∇dψ = 0, (2.1)

where, τ(ψ) ∈ Γ(ψ−1TN) represents the tension field of ψ, and ∇ denotes the

induced connection on the pull-back bundle ψ−1TN . By (2.1), it can be seen

that the tension field of any function f(x, y) ∈ C∞(R2) is considered as follows

τ(f) = ∆f, (2.2)

where ∆f is the Laplacian operator of the function f which is defined as follows

∆f =
∂2f

∂x2
− ∂2f

∂y2
. (2.3)

By (2.1)-(2.3), it can be seen that f is harmonic if ∆f = 0.

Let f(x, y) be a 2D image. Applying the numerical calculation methods for

approximating the second order derivation of f(x, y), we have

∂2f

∂x2
= f(x+ 1, y)− 2f(x, y) + f(x− 1, y), (2.4)

Similarly

∂2f

∂y2
= f(1, y + 1)− 2f(x, y) + f(x, y − 1). (2.5)

Substituring (2.4) and (2.5) in (2.3), we get

∆f = f(x+1, y)−4f(x, y)+f(x−1, y)+f(1, y+1)−2f(x, y)+f(x, y−1). (2.6)

By(2.6), the Laplacian filter in a 3x3 configurationis can be given as follows:

∆ :=
∂2

∂x2
− ∂2

∂y2
=

0 1 0

1 −4 1

0 1 0

 . (2.7)

For more details see [1].

Laplacian filters are commonly used in image processing for edge detection

and sharpening. They are a type of linear filter that highlights regions of

rapid intensity change in an image. By convolving the filter with an image,

areas of high frequency and edges are emphasized, making them useful for var-

ious computer vision tasks such as feature extraction and image enhancement.

Particularly, Laplacian filters highlight pixels that have a higher difference in

intensity with their neighbors, effectively emphasizing edges. The size of the

kernel affects the level of detail detected; smaller kernels detect finer details and

sharper edges, while larger kernels can smooth out finer details, highlighting

broader edges but potentially introducing more noise.Additionally, the effect

of iteration-applying the Laplacian filter repeatedly to an image-enhances the

edges, making them sharper and more prominent, while removing information

from smooth areas, leading to a loss of detail. Repeated iterations also amplify
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noise. Consequently, after many iterations, the image may become more ab-

stract, dominated by sharp transitions, lines, or boundaries, with most smooth

areas disappearing, and the overall appearance becoming noisier. [1].

We now employ the Laplacian filter to process an image and share its cor-

responding pseudo code in MATLAB. Let the function f(x, y) represent the

famous “Cameraman” image, commonly used as a standard benchmark in im-

age processing.

Figure 1. The input image, widely recognized as the “Cam-

eraman” benchmark in image processing contexts.

When the Laplacian filter, ∆f(x, y), is applied to the image in Figure 1, the

resulting image demonstrates enhanced edges.

Figure 2. The behavior of the Laplacian filter from the per-

spective of the kernel size and the number of iterations
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Let g(x, y) denotes the output image which is presented by

g(x, y) = f(x, y)−∆f(x, y), (2.8)

which is equivalent with the following kernel

g(x, y) =

 0 −1 0

−1 5 −1

0 −1 0

 , (2.9)

is given by by the following figure

Figure 3. The output image which is obtained by equation (2.8)

After applying the Laplacian filter, it is evident that the output image, Figure

3, is significantly sharper and of better quality compared to the original input

image, Figure 1.

The harmonicity of f which is equivalent to ∆f = 0, indicates that the image

has no rapid intensity change. In other words, it indicates that the image lacks

clear boundaries. This can occur in images with consistent color, images with

smooth transitions, perfectly balanced content, heavily blurred images, [2].

The pseudocode of applaying Laplacian filter on input image can be given

as follows:

Figure 4. The pseudocode of applaying Laplacian filter in images

Noting that the Laplacian filter is often used in conjunction with other tech-

niques, such as Gaussian smoothing, to reduce noise before edge detection.
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This combination, known as the Laplacian of Gaussian (LoG), is particularly

effective in edge detection applications, [3].

3. (α, f)-Harmonic Maps

Throughout this study, it is assumed that φ : (Mm, g) −→ (Nn, h) is a

smooth map from an m−dimensional compact Riemannian manifold (Mm, g)

to an n−dimensional Riemannian manifold (Nn, h). Denote by ∇M and ∇N
the Levi-Civita connections on M and N , respectively. In addition, the induced

connection on the pullback bundle φ−1TN is denoted by ∇ and defined by

∇Xω = ∇Ndφ(X)ω

for any section ω ∈ Γ(φ−1TN) and X ∈ χ(M).

For α > 1, setting

Aα(φ) := 2α(1+ | dφ |2)α−1, (3.1)

and

Bα(φ) := 4α(α− 1)(1+ | dφ |2)α−2. (3.2)

Definition 3.1. Let α be a real number greater than 1 and f be a smooth

function on M . The (α, f)− energy functional of φ : (M, g) −→ (N,h) is

defined as follows

Eα,f (φ) :=

∫
M

f(1+ | dφ |2)αdVg. (3.3)

The critical points of Eα,f are called α−harmonic maps.

The (α, f)− tension field of φ is defined by

τ(α,f)(ψ) := fτα(φ) +Aα(φ)dφ(gradMf), (3.4)

where τα(φ) and Aα(φ) are defined by (3.4) and (3.1), respectively.

Theorem 3.2. Any smooth map φ : (M, g) −→ (N,h) is (α − f)harmonic if

and only if τ(α,f)(φ) ≡ 0.

Proof. Assume that {φs} be a smooth variation of φ such that φ0 = φ. Let

Φ : M × (−ζ, ζ) −→ N be defined by

Φ(p, s) = φs(p),

where M × (−ζ, ζ) is equipped with the product metric. We extend a vector

field Z on M and
∂

∂s
naturally on M × (−ζ, ζ) and denote those also by Z and

∂

∂s
, respectively. Setting

Θ := dΦ(
∂

∂s
) |s=0 . (3.5)
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The same notations ∇ and ∇M shall be used for the induced connection on

Φ−1TN and the Levi-Civita connection on the M × (−ζ, ζ). Let {ēi} be an

orthonormal frame with respect to g on M such that

∇Mēi ēj = 0

at p ∈M for all i, j = 1, · · · ,m(m = dimM). By (3.1), we have

f
∂

∂s
(1+ | dφs |2)α = αf(1+ | dφs |2)α−1 ∂

∂s
| dφs |2

= fAα(φs)

m∑
j=1

h(∇ ∂

∂s

dΦ(ēj), dΦ(ēj))

= fAα(φs)

m∑
j=1

h(∇ējdΦ(
∂

∂s
), dΦ(ēj))

= fAα(φs)

m∑
j=1

{
ēj .h

(
dΦ(

∂

∂s
), dΦ(ēj))

− h(dΦ(
∂

∂s
),∇ējdΦ(ēj)

)}
(3.6)

where we use that

∇ ∂

∂s

dΦ(ēj)−∇ējdΦ(
∂

∂s
) = dΦ[

∂

∂s
, ēj ] = 0, (3.7)

for the third equality.

Let Xs be a smooth vector field on M such that

g(Xs, Z) = h(dΦ(
∂

∂s
), dΦ(Z)), (3.8)

for any vector field Z on M . Utilizing (3.6) and (3.8), we get

f
∂

∂s
(1+ | dψs |2)α = fAα(φs)

m∑
j=1

{
ēj .g(Xt, ēj)− h(dΨ(

∂

∂s
),∇ējdΦ(ēj))

}

= fAα(φs)

m∑
j=1

{
g(∇Mēi Xt, ēj) + g(Xt,∇Mēj ēj)

}

− fAα(φs)

m∑
i=1

{
h(dΦ(

∂

∂s
),∇ējdΦ(ēj))

}
= fAα(φs)div(Xt)

− fAα(φs)

m∑
j=1

h

(
dΦ(

∂

∂s
),∇ējdΦ(ēj)− dΦ(∇Mēj ēj)

)

= div

(
fAα(φs)Xs

)
− g
(
Xs, fgrad(Aα(φs))

)
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− g
(
Xs,Aα(φs)grad(f)

)
− h(dΦ(

∂

∂s
), fAα(φs)

m∑
j=1

{∇ējdΦ(ēj)− dΦ(∇Mēj ēj)})

= div

(
fAα(φs)Xs

)
− h
(
dΦ(

∂

∂s
), fdΦ(grad(Aα(φs)))

+Aα(φs)dΦ(gradf)

+

m∑
j=1

fAα(φs)

[
∇ējdΦ(ēj)− dΦ(∇Mēj ēj)

])
(3.9)

Applying (3.4), (3.9) and Green’s theorem, we have

d

ds
E(α,f)(φs) |s=0 = −

∫
M

f
∂

∂s
(1+ | dφs |2)α |s=0 dVg

= −
∫
M

h

(
Θ, fτα(φ) +Aα(φ)dφ(gradMf)

)
dVg

= −
∫
M

h(Θ, τ(α,f)(φ))dVg. (3.10)

The equation (3.10) implies that any smooth map φ : M −→ N is an

(α, f)−harmonic map if and only if the (α, f)−tension field

τ(α,f)(φ) ≡ 0.

This completes the proof. �

4. A Liouville Type Theorem for (α, f)-Harmonic Maps

This section is devoted to study a Liouville type theorem for (α, f)− har-

monic maps. The Liouville type theorem play a key role in the field of harmonic

maps. The Liouville theorems investigate the conditions under which any har-

monic map from a Riemannian manifold to another with finite energy, must be

a constant. The theorem is named after Joseph Liouville, a French mathemati-

cian recognized for his groundbreaking work in 19th-century complex analysis,

proved that every bounded entire function must be constant. This type of theo-

rem provides a powerful tool for understanding the behavior of entire functions

and has applications in various areas of mathematics and physics[19].

Many scholars have investigated Liouville type theorems for harmonic maps

between complete smooth Riemannian manifolds. For instance, In [9] it is

shown that the Liouville-type theorem for α-harmonic maps from a Riemannian

manifold to a Riemannian manifold with non-negative Ricci curvature, while

Rimoldi and Veronelli [16] also established the Liouville-type theorem for f-

harmonic maps.

In this section, we aim to present a proof of the Liouville type theorem

for (α, f)-harmonic maps from a complete non-compact Riemannian manifold
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(M, g) with positive Ricci curvature into a Riemannian manifold (N,h) with

non-positive sectional curvature.

Proposition 4.1. Let φ : (M, g) −→ (N,h) be a smooth map between Rie-

mannian manifolds and {Ei} be a local orthonormal frame on (M, g). The

Bochner formula for φ is given as follows

1

2
∆M 〈dφ, dφ〉 = h(dφ(Ei), dφ(RicciMEi)) + h(∇Eiτ(φ), dφ(Ei)) + h(∇dφ,∇dφ)

− h(RN (dφ(Ei), dφ(Ej))dφ(Ej), dφ(Ei)). (4.1)

Lemma 4.2. Suppose that f ∈ C∞(M) and φ : (M, g) −→ (N,h) be a smooth

map between Riemannian manifolds. Then

〈∇dφ(gradMf), dφ〉 =〈dφ(∇MgradMf), dφ〉+
1

2
〈dφ, dφ〉gradMf. (4.2)

where 〈, 〉 is the inner product on the vector bundle φ−1TN ⊗ T ∗M .

By using Proposition 4.1 and Lemma 4.2, the following Theorem is given.

Theorem 4.3. Let f ∈ C∞(M) be a smooth positive function and φ : (M, g) −→
(N,h) be a (α, f)−harmonic map from a non-compact complete Riemannian

manifold with non-negative Ricci curvature to a Riemannian manifold with

non-positive sectional curvature with α > 2. Assume that∫
M

fdVg = +∞, Eα,f (φ) <∞, Hessf ≤ 0, | τα(φ) |<∞

where τα(φ)defined by (1.1). Then φ is constant.

Proof. By (1.1) and (3.4) and considering that φ is (α, f)−harmonic, one can

obtain

fAα(φ)τ(φ) + f | dφ | Bα(φ)dφ(gradM | dφ |) +Aα(φ)dφ(gradMf) = 0. (4.3)

Setting

ω1(Y ) = Aα(φ)h(dφ(gradMf), dφ(Y )),

ω2(Y ) = h(τ(φ), fAα(φ)dφ(Y )),

ω3(Y ) = f | dφ | Bα(φ)h(dφ(gradM | dφ |), dφ(Y )), (4.4)

for any Y ∈ χ(M). By calculating the divergence of ω1 and ω2, we get

div ω1 = Aα(φ)〈∇dφ(gradMf), dφ〉 − 1

f
Aα(φ) | dφ(gradMf) |2,

div ω2 = fAα(φ)〈∇τ(φ), dφ〉. (4.5)

Applying (4.3), It can be seen that

ω1 + ω2 + ω3 = 0 (4.6)
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Using (4.5) and (4.6), we have

div ω3 = −Aα(φ)〈dφ(∇MgradMf), dφ〉 − 1

2
Aα(φ)(gradMf)(〈dφ, dφ〉)

+
1

f
Aα(φ) | dφ(gradMf) |2 −fAα(φ)〈∇τ(φ), dφ〉, (4.7)

By applying Proposition (4.1) and the assumptions of Theorem 4.3, we get

div ω3 ≥ fAα(φ) | ∇dφ |2 −1

2
fAα(φ)(gradMf)(| dφ |2)− 1

2
Aα(φ)∆M | dφ |2 .

(4.8)

where ∆M is the Laplacian operator on the Riemannian manifold (M, g). Set-

ting

∆̄ | dφ |= div (f gradM (| dφ |)). (4.9)

Using (4.8) and (4.9), and applying Kato’s inequality | ∇dφ |2≥| gradM | dφ ||2
we get

div ω3 ≥ − | dφ | Aα(φ)∆̄ | dφ | . (4.10)

Assume that µ ∈ C∞(M) and multiplying (4.10) by µ2, we get

div(µ2ω3)− 2µf | dφ | Bα(φ)h(dφ(gradMµ), dφ(gradM (| dφ |)))
≥ 2µf | dφ | Aα(φ)g(gradMµ, gradM | dφ |)

+
1

2
µ2fBα(φ) | gradM | dφ ||2 −div(µ2fAα(φ) | dφ | gradM | dφ |) (4.11)

By the Young inequality we have

− 2µf | dφ | Bα(φ)h(dφ(gradMµ), dφ(gradM (| dφ |)))

≤ ξ1µ2fBα(ψ) | gradM | dφ ||2 +
1

ξ1
f(1+ | dφ |2)α | gradMµ |2 (4.12)

and

− 2µf | dφ | Aα(φ)g(gradMµ, gradM | dφ |)

≤ ξ2µ2fBα(φ) | gradM | dφ ||2 +
1

ξ2
f(1+ | dφ |2)α | gradMµ |2 (4.13)

for any ξ1 and ξ1. Substituting (4.12) and (4.13) in (4.11), we get

div(µ2ω3) + (
1

ξ1
+

1

ξ2
)f(1+ | dφ |2)α | gradMµ |2

≥ −div(µ2fAα(φ) | dφ | gradM | dφ |)

+ (ξ1 + ξ2 +
1

2
)µ2fBα(φ) | gradM | dφ ||2 . (4.14)

Applying the divergence theorem with ξ1 = ξ2 =
1

2
, we obtain∫

M

f(1+ | dφ |2)α | gradMµ |2 dVg ≥
3

2

∫
M

fµ2Bα(φ) | gradM | dφ ||2 dVg.

(4.15)
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Choose the smooth cut-off µ = µr on M , i.e. µ ≤ 1 on M , µ = 1 on the

geodesic ball B(x, r), µ = 0 on M − B(x, 3r), and | gradMµ |≤
3

r
where

x ∈M . Replacing µ = µr in (4.15), it is obtained that

9

r2

∫
B(x,3r)

f(1+ | dφ |2)αdVg ≥
3

2

∫
B(x,3r)

fBα(φ) | gradM | dφ ||2 dVg.

(4.16)

Due to the fact that E(α,f) <∞ when r −→∞ we get∫
M

fBα(φ) | gradM | dφ ||2 dVg = 0. (4.17)

Therefore, if | dφ |6= 0 on M we get

| gradM | dφ ||2= 0. (4.18)

This implies that | dφ | is positive constant on M . Therefore

Eα,f (φ) = (1+ | dφ |2)α
∫
M

fdVg <∞. (4.19)

This is in contradiction with
∫
M
fdVg =∞. Therefore φ is constant and hence

completes the proof. �
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